Documentation of Tools for Noise
Removal from Pyrosequenced
Amplicons (AmpliconNoiseV1.29)

30th July 2013

Usage and reference:

AmpliconNoise is a collection of programs for the removal of noise from 454
sequenced PCR amplicons. Typical usage involves three steps:

1) the removal of noise from the sequencing itself,
2) the removal of PCR point errors, and

3) removal of chimeric sequences using the program Perseus.

While steps 2-3 can be used on amplicon reads generated using most sequencing
technologies, step 1 is currently only supported for sequences generated using
454 pyrosequencing.

When presenting work using AmpliconNoise, please refer to the following
citation:

Quince et al (2011), 'Removing noise from pyrosequenced amplicons.', BMC
Bioinformatics 12, 38.

Installation:

Requirements

The programs have been tested on MacOsX and Linux - Windows is not
supported. A cluster is not necessary but reasonable size data sets will only run
on a cluster or good server. A version of Message Passing Interface (MPI) is

necessary to install the programs. Open MPI is a good choice:

http://www.open-mpi.org/

In addition, the chimera checker Perseus requires that both MAFFT and the Gnu
Science Library are installed:

http://mafft.cbrc.jp/alignment/software/

http://www.gnu.org/software/gsl/

The proprietary program sffinfo from 454 Genomics (Roche) is optional, but the
convenience scripts RunTitanium.sh, and RunFLX.sh, assume that this is installed.
These scripts also use usearch and this too should be downloaded and installed
(http://www.drive5.com/usearch/). sffinfo is part of the analysis software and
drivers that are shipped with the sequencing machines from Roche and can
possibly be obtained from your sequencing facility, or ask them to deliver plain
text versions of all flowgram (SFF) files. Alternatively, you can use the free
software Flower by Ketil Malde
(http://blog.malde.org/index.php/2009/07 /03 /a-set-of-tools-for-working-
with-454-sequences) or the script process_sff.py of QIIME
(http://www.qgiime.org/) to convert the SFF-files to plain text versions. The
convenience scripts are still run referring to the name of the SFF-file but will skip
the initial parsing step. If using Flower, the script RunTitanium.sh needs to be
edited by changing “SplitKeys.pl” to “SplitKeysFlower.pl” (line 76).

Installation procedure

First extract and unzip the programs:

tar -xvzf AmpliconNoiseV1.29.tar.gz

To compile the programs, move into the top directory and type:

make clean
make

Any errors here may require changing the default C- (cc) and C-MPI compilers
(mpicc) in the individual makefiles associated with the executables.

If the programs compile without errors, type:

make install

This will place the executables in the bin directory. This directory and the Scripts
directory need to be added to your $PATH in order to run the programs from the
command line. If you extract AmpliconNoiseV1.29.tar.gz in your home directory
($HOME) then this command should be added to your .bashrc or .profile or
equivalent. Edit this file and add these two lines:

export PATH=$HOME/AmpliconNoiseV1.29/bin:S$SPATH
export PATH=SHOME/AmpliconNoiseV1.29/Scripts:SPATH

You should also set environment variables to specify the location of look-up
tables used by the programs. These define the noise distributions. The following
commands ensure that the file LookUp_Titanium.dat" is always used for PyroDist
and PyroNoise and Tran.dat by SeqDist and SeqNoise. Having set these the
programs can be run anywhere otherwise they can only be run from inside the
bin directory. Add the two following lines to your .bashrc or .profile located in
your home directory:

export AMPLICON NOISE HOME=$HOME/AmpliconNoiseV1.29/
export

PYRO LOOKUP FILE=SHOME/AmpliconNoiseV1.29/Data/LookUp Ti
tanium.dat

export
SEQ_LOOKUP_FILE=$HOME/AmpliconNoiseVl.29/Data/Tran.dat

Then either open a new terminal window or source the file to activate these
environment variables:

source ~/.bashrc

*If working with sequencing data generated using an older Pyrosequencing
protocol or machine such as (non-Titanium) GS FLX or GS 20, then the file
LookUp_E123.dat located in the same directory should be used instead of
LookUp_Titanium.dat

Testing the installation by running a single dat file

The directory Test contains the shell script Run.sh which will run through the
entire de-noising process for a single dat file. This is the file format
AmpliconNoise uses to store flowgrams. A smallish file consisting of 2,094 GS
FLX reads, which will process on a reasonably new MacBook in ten or twenty
minutes C005.dat is included. This should be run as follows:

./Run.sh C005.dat

If this works correctly the de-noised file C005_s60_c01_T220_s30_c08_cd.fa with
just 18 sequences will be generated. The file
C005_s60_c01_T220_s30_c08_cd.mapping will map these back to the original
reads. Other files reflecting the intermediate steps are also generated but in
general they can be ignored. The list file giving complete linkage OTUs for these
sequences is also produced C005_s60_c01_T220_s30_c08.list.

Running AmpliconNoise on a complete barcoded
454 run

In the directory Scripts in the AmpliconNoise installation directory, there are two
scripts for running the typical analysis workflow. These are RunTitanium.sh and

RunFLX.sh. These can be executed directly on the raw output from
pyrosequencing data supplied as flowgram (SFF) files (file suffix “.sff”).

In addition there are a number of other scripts for less standard pipelines.

* RunTitaniumA.sh: This will run 454 and IT data sets that comprise acyclic
flows and non-standard key signatures. It is currently being tested but
will replace RunTitanium.sh in the next release.

* RunTitaniumFast.sh: A script that splits even small samples with uclust in
order to speed up denoising at a cost of sensitivity.

* RunBoth.sh: Another script under testing to run amplicons with dual
barcodes. This will be fully documented in future updates.

RunTitanium.sh and RunFLX.sh

RunTitanium.sh is used for GS FLX Titanium or GS FLX Titanium+ datasets
whereas RunFLX.sh is used for GS FLX or GS20 datasets.

In addition to the sff file, a comma-separated text-file named keys.csv needs to be
present in the same directory. This file should contain one line for each barcode
containing the sample name, comma and the barcode sequence, excluding the
primer sequence used, e.g.:

Sample(07,CTCGCGTGTC

If barcodes have not been used in your data set simply include a single line in
this file with an empty barcode field e.g.

Sample,

In addition, a primer sequence has to be supplied, either by passing it as a second
argument to the script or by making a FASTA-formatted file containing only the
primer sequence named primer.fasta, e.g.:

>T787F
ATTAGATACCCNGGTAG

Note that this file may contain degenerated base characters, such as ‘N’.

As a default, the script is run using 4 parallel processes. To change this value, edit
the script or make a local copy of it and edit that. Change line “nodes=4" to as
many processes as you would like to run. The number of nodes should not
exceed the cores on a server or the total number of cores on a cluster.

Both scripts are then run by passing the command and the name either of an sff
file (if sffinfo is installed) or the already text translated file e.g.

RunTitanium.sh all MySamples.sff

Or

RunTitanium.sh all MySamples.sff.txt

Alternatively each step in the process can be run separately. There are six steps
in all. Each is run by passing the corresponding command as the first argument
to the script:
split: generates one file for each sample named (SampleName.raw)
comprising all flowgrams from that sample found by insisting on a perfect
match to the primer and barcode (this command requires the sff or sff.txt
file as a second argument e.g. RunTitanium.sh split
MySamples.sff.txt)
filter: generates filtered dat files
pyronoise: performs the PyroNoise flowgram clustering steps
segnoise:performs the SeqNoise sequence clustering step to remove
PCR errors
perseus: runs Perseus chimera classifier
perseusd: runs PerseusD chimera classifier
otus: builds OTUs from the denoised sequences

Output of AmpliconNoise

The different processes of the AmpliconNoise workflow generate several files,
most important of which are (using “SampleX” as an example sample name):

SampleX F_Good.fa

This file contains the unique sequences after removal of sequencing noise, PCR
point errors and chimeras, in FASTA format. The last number of each sequence
name given in the FASTA header, indicated after the underscore character,
represents the number of reads that share this unique sequence after cleaning.
For example the fasta header “>LA_RNA_0_8" indicates that this sequence
represent eight reads, from the sample LA_RNA.

All_Good_C01.fa, All Good_C03.fa, All_Good_CO05.fa, All_Good_C10.fa

These files contain representative sequences for each OTU (Operational
Taxanomic Unit) after a 1%, 3%, 5%, 10% maximum linkage clustering of the
unique, de-noised sequences.

All_Good_CO01.csv, All Good_CO03.csv, All_ Good_C05.csv, All_Good_C10.csv

These files contain frequencies for each OTU (Operational Taxanomic Unit) after
a 1%, 3%, 5%, 10% average linkage clustering of the unique, de-noised
sequences in each of the samples.

If complete linkage clustering is desired then simply remove the -a flag from the
FCluster command at line 328 of the script.

AN stats.txt
This tab-separated text file contains statistics about the run, such as number of
reads and unique sequences before and after de-noising and chimera filtering.

SampleX [..] cd.mapping
This file maps each unique sequence back to the name of its reads.

Step-by-step description of workflow parameters

This section explains the parameters of the RunTitanium.sh script. The other
script RunFLX.sh is almost identical just reparameterised for FLX.

bc=keys.csv
nodes=4
snodes=1

min size=50
max size=50000

These values specify the name of the barcodes metadata file keys.csv, the number
of nodes to be used, the number of nodes used for data sets with less than 100
sequences, the minimum number of reads for a sample to be processed, and the
maximum sample size above which it will be split into multiple parts for
separate processing. After this we have:

mpiextra="--mca btl tcp,self"

export AMPLICON NOISE HOME=$HOME/AmpliconNoiseV1.29/
export
PYRO_LOOKUP_FILE=$AMPLICON_NOISE_HOME/Data/LookUp_Titaniu
m.dat

export SEQ_LOOKUP_FILE=$AMPLICON_NOISE_HOME/Data/Tran.dat

The first of these variables are extra flags to pass to mpirun. The rest define
environment variables for the AmpliconNoise home directory and the
parameters to use for PyroNoise and SeqNoise respectively. We then have
variables for the noise removal programs themselves:

#hardcoded parameters for AmpliconNoise

length=400
#truncation length

spyro=60
#PyroNoise cluster size

cpyro=0.01

#PyroNoise cluster init

sseqg=25
#SegNoise cluster size

cseqg=0.08
#SegNoise cluster init

alpha=-7.5
#Perseus logit intercept

beta=0.5
#Perseus logit gradient

minflows=360

maxflows=720

Of these the most important and the ones most likely to be adjust by the user
would be the last two. To be less strict on filtering reduce minflows so to 240 for
example. The other parameters are explained in the description of the individual
programs below.

Brief description of RunTitanium.sh script

The complete script is complex but we will attempt to give an overview of the
most salient steps. The workflow is started by reading the primer sequence from
file primer.fasta. The script is split into separate subroutines corresponding to
six steps mentioned above. The first subroutine split generates a plain-text
version of the flowgram (SFF) file if such a file does not already exists (line 66):

if [! -f S$S{stub}.sff.txt]; then
echo "Generating .sff.txt file"
sffinfo $1 >${stub}.sff.txt

fi

The plain-text flowgram file is then quality filtered and parsed into one or more
.dat files containing only the identifiers and flow values of those reads that pass
quality filtering (filter subroutine - line 93). The dataset is split into one .dat file
for each barcode. Only exact matches to the given barcodes are retrieved.

The pre-filtering control also removes all reads with fewer than 360 flows before
the first empty flow cycle or degenerate base (flow intensity between 0.5 and
0.7).

Following pre-filtering, then steps pyronoise, seqnoise and perseus are repeated
for each sample using RunTitanium / RunFLX.

In the first step of pyronoise, distances between flowgrams are calculated using
PyroDist (line 173):

echo "Running PyroDist for S${stub}"
mpirun -np $nodes PyroDist -in $file -out ${stub} >
${stub}.fout

Then, hierarchical clustering with complete linkage is carried out using FCluster
to provide input file for PyroNoise. (Some intermediate files are also removed):

echo "Clustering .fdist file"
FCluster -in ${stub}.fdist -out S${stub} X > ${stub}.fout

rm ${stub}.fdist
rm S{stub} X.otu S{stub} X.tree

Next, the flowgrams are iteratively clustered according to the EM algorithm
implemented in PyroNoise, to remove pyrosequencing noise. An initial clustering
cut-off of $cpyro and cluster size of $spyro are used (see Section Programs for
details).

echo "Running PyroNoiseM"

echo "Running PyronoiseM for S${stub}" mpirun Smpiextra -
np Snodes PyroNoiseM -din ${stub}.dat -out S${pstub} -1lin
${stub} X.list -s $spyro -c Scpyro > $S{pstub}.pout

The ends of reads are often noisy, so next, we truncate these to 400 bp (220 for
FLX reads). This position can be moved to change the balance between
remaining noise and sequence length and , barcodes and primer sequences are
removed.

Parse.pl ${barcode}S${primer} S$length < S{pstub} cd.fa >
${pstub} TS${length}.fa

The next step of the process is to remove PCR errors in the subroutine seqnoise.
To begin we calculate the PCR-error-corrected distances between sequences
using SeqDist:

echo "Running SegDist for ${stub}"

mpirun Smpiextra -np S$tnodes SegDist -in

${pstub} TS{length}.fa > S${pstub} TS${length}.segdist

Complete linkage clustering (again using FCluster) is carried out to provide input
to SeqNoise:

echo "Clustering SegDist output for ${stub}"

FCluster -in ${pstub} TS${length}.seqgdist -out
${pstub} TS{length} > ${pstub} TS{length}.fcout

SeqNoise implements the sequence clustering algorithm that removes PCR
errors:

echo "Running SegNoise"

mpirun Smpiextra -np Stnodes SegNoise —-in

${pstub} TS{length}.fa -din ${pstub} TS${length}.seqgdist
-lin ${pstub} TS{length}.list -out S{sstub} -s $sseq -c
Scseq -min S${pstub}.mapping > ${sstub}.snout

PerseusD is then run in the subroutine perseus to screen for and remove
chimeric sequences.

Finally we build OTUs from the de-noised sequences in subroutine otus.

Running larger datasets

Any samples with more reads than the parameter max_size will be automatically
split and run with the subroutine pyronoisesplit.

TestTitaniumFast.sh

An additional script is provided which uses usearch to perform preclustering of
even small samples and hence runs faster than the standard script. This comes at
a small cost in terms of sensitivity to remove noise.

Testing the scripts

In the directories TestFLX, TestTitanium, TestTitaniumFast configuration files
are available for testing the RunFLX.sh, RunTitanium.sh and RunTitaniumFast.sh
scripts respectively. The data sets themselves have to be downloaded, however.
To test the RunFLX.sh script:

cd TestFLX

wget
http://userweb.eng.gla.ac.uk/christopher.quince/Data/Arti
ficialGSFLX.sff.txt.gz

gunzip ArtificialGSFLX.sff.txt.gz

RunFLX.sh all ArtificialGSFLX.sff.txt

If this script runs correctly it will generate the file AN_stats.txt as follows:
Sample Total Pre-filtered Unique Chimeric CleanSeq CleanReads
Artificial 40258 31045 60 17 43 31025

And to test the RunTitanium.sh script:

wget
http://userweb.eng.gla.ac.uk/christopher.quince/Data/Tita
nium.sff.txt.gz

gunzip Titanium.sff.txt.gz

RunTitanium.sh all Titanium.sff.txt

If this script runs correctly it will generate the file AN_stats.txt as follows:
Sample Total Pre-filtered Unique Chimeric CleanSeq CleanReads
Titanium 3576525311307 118 189 25149

Testing RunTitaniumFast.sh proceeds as above and should give:

Sample Total Pre-filtered Unique Chimeric CleanSeq CleanReads
Titanium 35765 25311 252 107 145 25168

Programs

FCluster:

-in string distance input file name
-out string output file stub
Options:

T resolution

-a average linkage

-W use weights

-i read identifiers

-S scale dist.

This performs a simple hierarchical clustering. It reads a distance file in text
format (-in). This code has been optimized by David Hunt of Tessella.

The first line in the text file gives the number of entities to be clustered N. This is
then optionally followed by N ids if the (-i) flag is set as separate lines. Otherwise
the N(N-1)/2 pairwise distances follow as individual lines. The distances d;; are
specified in orderi=1...N,j = 1..i.

The program performs complete linkage clustering as default but average
linkage can be specified by the (-a) flag. Average linkage accounting for weights
is possible with (-a -w) the weights are then take from the ids which must have
format

Namel Weightl

NameN WeightN

The program produces three output files stub.list, stub.otu, stub.tree when stub is
specified by (-out):

stub.list has format (similar to DOTUR):
d NClusters Clusterl .. ClusterN

where d is the distance at which clusters formed. N is the number of clusters at
this cutoff and then each cluster is specified as a comma separated list of entries
either indexed 0 to N -1 or by ids if the (-i) flag is specified.

stub.otu simply gives the cluster sizes in the same format. Clusters are outputted
at separations of 0.01 by default but this can be change by (-r) flag.

stub.tree is the hierarchical in newick tree format
Finally the distances can be scaled by their maximum using the (-s) flag.
Examples:
To perform complete linkage hierarchical clustering:
FCluster -in test.fdist -out test M

Or to use average linkage with weights and ids in output:

FCluster -i —-a -w -in test.ndist -out test A

(this requires distance file with ids)

FastaUnique:
-in string input file name

This program simply dereplicates a fasta file of sequences. Sequences of different
length are only compared up to the smaller length and if identical up to that
smaller length are judged the same sequence. Dereplicated sequences with ids
that are a combination of the founding sequence id and the number of identical
sequences found i.e.

>founderID weight

The mapping of sequences to the uniques is given by a .map file generated with
the name fastaname.map where fastaname is obtained by parsing .fa of the
original file name. This has a line for each unique sequence in format:

OriginallIdx, NewIdx, ParentID, I:
Idx 1,.Idx I:ID 1,..,ID I

.where [is the number of sequences mapping to the unique.

Example:

FastaUnique -in Test.fa > Test U.fa

NDist (pairwise Needleman-Wunsch sequence distance matrix from a fasta file)

-in string fata file name
Options:
-i output identifiers

This program generates a distance matrix from a fasta file of the format required
by FCluster. It uses a simple implementation of the exact Needleman-Wunsch
algorithm to perform pairwise alignments using a fixed gap penalty of 1.5.
Distances are then calculated according to the ‘QuickDist’ algorithm basically
counting mismatched nucleotides as a distance of one and with a cost of one for a
gap regardless of length and then normalizing by number of comparisons (Huse
et al. Genome Biology 2007). Output is to standard out.

The only option (-i) is to output identifiers suitable for running FCluster with —i.

This is an MPI program allowing the calculation of distances to spread across
multiple cores and/or nodes.

Example:

mpirun -np 32 NDist —-in Test.fa > Test.ndist

Perseus (slays monsters)

-sin string seq file name

Options:

-s integer

-tin string reference sequence file
-a output alignments

-d use imbalance

-rin string lookup file name

The Perseus algorithm given an input fasta file (-sin) takes each sequence in turn
and searches for the closest chimeric match using the other sequences as
possible parents. It finds the optimum parents and breakpoints. It only searches
for parents amongst species of equal or greater abundance where abundance is
obtained from the fasta ids:

>ID weight

Never run multiple copies of Perseus in the same directory! The (-a) flag outputs
all the chimeric alignments and is useful for verifying if sequence truly is
chimeric. The (-d) flag uses a slightly different algorithm including a penalty for
imbalance on branches of the tree formed by the chimera and parents which may
give better results in some instances. Perseus uses a nucleotide transition file
and (-rin) allows this file to be set otherwise it defaults to the SEQ_LOOKUP_FILE
variable and if this is not set the header variable LOOKUP_FILE which is set to
“./Data/Tran.dat”.

We recommend removing degenerate primers before running Perseus.

[t produces a lot of info but ... the critical portion are the x=12th, y=13th, and
z=14th tokens. If x < 0.15 and y >= 0.0 and z is larger than about 15 then this is a
chimera.

The (-s) controls skew i.e. how much greater in frequency a sequence has to be to
be a putative parent. This default to one - higher values can reduce the false
positive rate.

The (-tin) option allows sequences other than the queries to be used as
references. This can be used to split a file for running across threads or on a
cluster (see example below).

Example usage:

sed ‘s/*ATTAGATACCC\w{1}GGTAG//’
C005 s60 c01 T220 s30 c08 cd.fa >
C005 s60 c01 T220 s30 c08 P.fa

Perseus -sin C005 s60 cO0l1 T220 s30 c08 P.fa >
C005 s60 c01 T220 s30 cO08 P.per

To split a fasta file into four sections each in its own directory and then run
Perseus in the background on each separately before recombining the output:

Split.pl Unevenl s25 P.fa 4

cd SplitO
Perseus -sin SplitO.fa -tin ../Unevenl s25 P.fa >
SplitO.per&

cd ../Splitl
Perseus -sin Splitl.fa -tin ../Unevenl s25 P.fa >

Splitl.peré&

cd ../Split?2

Perseus -sin Split2.fa -tin ../Unevenl s25 P.fa >
Split2.peré&

cd ../Split3
Perseus -sin Split3.fa -tin ../Unevenl s25 P.fa >
Split3.per&
../Scripts/Join.pl Split*/*per > Unevenl s25 P.per

To classify sequences use Class.pl with suggested parameters for V5:

Class.pl C005 s60 c01 T220 s30 cO08 P.per -6.6925 0.5652
> C005 s60 c01 T220 s30 c08 P.class

.this generates a file with format:
segqname X y z probability of being chimeric

We can split up the original fasta file at 50% probability of being chimeric:
FilterGoodClass.pl C005 s60 cOl1 T220 s30 c08 P.fa
C005 s60 c01 T220 s30 c08 P.class 0.5 2>

C005 s60 c01 T220 s30 cO08 Good.fa >
C005 s60 c01 T220 s30 c08 Chi.fa

PerseusD (slays monsters)

-sin string seq file name

Options:

-c float,float setalpha,beta default=-5.54,0.33
-s integer set skew default = 2

-tin string reference sequence file

-a output alignments

-b do not use imbalance

-rin string lookup file name

PerseusD differs in algorithm and output from Perseus. It only tests against
parents that have been classified as non-chimeric. It also only tests for possible
parents amongst sequences that are at least twice as abundant as the query.
These changes reduce false positives but at the cost that sensitivity is also
slightly reduced. They were inspired by the strategy adopted in uchime (Edgar et
al. 2011 ‘UCHIME improves sensitivity and speed of chimera detection’,
Bioinformatics). This program should be preferred when a few chimeras can be
tolerated and false positives cannot. Unlike Perseus it needs to perform
classification itself. Usage is just like Perseus except that it generates .class-files
rather than .per equivalent to running Perseus and then Class.pl:

Example usage:

Perseus -sin C005 s60 cO0l1 T220 s30 c08 P.fa >
C005 s60 c01 T220 s30 c08 P.class

The out format is therefore of this form:
SegName x y z p

.where p is the probability of the sequence being chimeric. Never run multiple
copies of PerseusD in the same directory! PerseusD uses the imbalance penalty as
default. The (-b) flag turns this off. The flag (-c alpha,beta) allows different alpha
and beta parameters to be passed to the program these default to values for the
V5 region trained through logistic regression. These work well generally though.
Other parameters are as for Perseus.

PyroDist (pairwise distance matrix from flowgrams)

-in string flow file name

-out stub out file stub
Options:

-ni no index in dat file
-rin string lookup file name

This program calculates a distance matrix between flowgrams. Input (-in) is to a
.dat file containing flowgrams in a simple format. The first line has the number of
flowgrams followed by the number of flows: N M. Each of the N flowgram entries
has the format: id length1 flow1 flow2 ... flowM where id is just an identifier,
length is the number of 'clean’ flows, followed by all M flows (although only
length will ever be used).

The distances are calculated according to the algorithm in Quince et al. 2009
except that alignment of flowgrams no longer occurs. This requires a look-up
table for the intensity distributions about the homopolymer length. By default
this is read in from a file set in the header file by the constant LOOKUP_FILE
which is set to “../Data/LookUp_E123.dat” a well configured distrubution for 454
GSFLX implementation. Consequently the program can only be run from the bin
directory to maintain this relative path. However, to allow the program to run
anywhere the environment variable PYRO_LOOKUP_FILE can be set as described
in the installation instructions or the path to a lookup file can be passed with the
(-rin) flag.

The optional flag (-ni) is necessary if the flowgram file contains no ids.
Output is to a distance matrix in flat format of name stub.fdist where stub is set
by the (-out) flag. Status information is sent to standard out and this can be

safely ignored if the program runs correctly.

This is an MPI program allowing the calculation of distances to spread across
multiple cores and/or nodes.

Example:

mpirun -np 32 PyroDist —-in Test.fa -out Test >
Test.fdout

This generates the distance matrix Test.fdist

PyroNoise (clusters flowgrams without alignments)

-din string flow file name

-out string cluster input file name
-lin string list file

Options:

-v verbose

-c double initial cut-off

-ni no index in dat files

-s double precision

-rin file lookup file name

This program uses an EM algorithm to construct de-noised sequences by
clustering flowgrams as described in Quince et al. 2009 but without alignments.
[t takes as input (-din) a flowgram file of the format described above and an
initial hierarchical clustering (-lin) generated by running FCluster on the output
of PyroDist. Output files are generated with the stub specified by flag (-out).

The cut-off for the initial clustering is specified by (-c) generally this should be
quite small 0.01 is a good value for most data sets. The paramter (-s) controls the
cluster size. The larger this is the tighter the clusters - 60.0 is a reasonable value
here but smaller may remove more pyrosequencing noise. If these parameters
are not set they default to these values.

The parameter (-rin) allows a look up file to be specified otherwise the program
uses the environment variable PYRO_LOOKUP_FILE if that is not set it defaults to
the global variable LOOKUP_FILE found in PyroNoise.h currently
“../Data/LookUp_E123.dat”. This will work provided the executable is run from
the bin directory to maintain this relative path to the files in ../Data.

The option (-v) outputs extra debug information to standard out.

Information on cluster convergence is output to standard out and after running
the program produces a number of files:

1) stub_cd.fa: a fasta file of de-noised sequences. The ids are formed as
“>stub_index_weight” where weight are the number of reads mapping to
that sequence, and index is just an arbitrary cluster number.

2) stub_cd.qual: qualities for the denoised sequences see Quince et al.
(unpublished).

3) stub.mapping: contains a line for each de-noised sequence giving the read
that characterizes that sequence followed by a tab separated list of
flowgram reads (specified by their ids read from dat file) that map to it.

4) directory stub: contains a fasta file for each de-noised sequence, i_index.fa,
of reads that map to it.

This is an MPI program allowing the calculation of distances to spread across
multiple cores and/or nodes.

Example:

mpirun —np 32 PyroNoise -din Test.dat -out Test s60 cO1
-lin Test X.list -s 60.0 -c 0.01 > Test s60 cOl.pout

PyroNoiseM
This version of PyroNoise has the exact same usage as above but stores flowgram

distances in memory. It is useful for Titanium data where the calculation of these
distances may be the limiting step.

SeqDist (pairwise distance matrix from a fasta file)

-in string fasta file name
Options:

-i output identifiers

-rin string lookup file name

This program generates a distance matrix of the format required by FCluster
from a fasta file. It uses a an implementation of the exact Needleman-Wunsch
algorithm to perform pairwise alignments. Distances account for nucleotide
transition probabilities as a result of PCR errors. There is a different cost for
homopolymer (4.0) and normal gaps (15.0). The probabilities, actually -log of,
are read from a look up table. By default this is from a file set in the header file by
the constant LOOKUP_FILE which is set to “./Data/Tran.dat” configured for a
standard polymerase. Consequently the program can only be run from the bin
directory to maintain this relative path. However, to allow the program to run
anywhere the environment variable SEQ_LOOKUP_FILE can be set as described in
the installation instructions or the path to a lookup file can be passed with the (-
rin) flag.

The option (-i) is to output identifiers suitable for running FCluster with -i.

This is an MPI program allowing the calculation of distances to spread across
multiple cores and/or nodes.

Example:

mpirun -np 32 SegDist —-in Test.fa > Test.seqgdist

SegNoise (clusters sequences)

-in string fasta sequence file name
-din string sequence distances file name
-out string cluster input file name

-lin string list file

Options:

-min mapping file
-V verbose

-C double initial cut-off
-S double precision
-rin string lookup file name

This program uses an EM algorithm to remove PCR noise by clustering
sequences as described in Quince et al. (2011). The same distance metric as
described in SeqDist is used. It takes as input (-in) a fasta file (with frequencies
defined in ids as >id_weight), (-din) a flat matrix of sequence distances generated
by SeqDist and an initial hierarchical clustering (-lin) generated by running
FCluster on the output of SeqDist. Output files are generated with the stub
specified by flag (-out).

The cut-off for the initial clustering is specified by (-c) generally this should be
quite large 0.08 is a good value for most data sets. The paramter (-s) controls the
cluster size. The larger this is the tighter the clusters - 30.0 is a reasonable value
here but smaller may remove more noise and larger allow high resolutions OTUs.
If these parameters are not set they default to these values.

The parameter (-rin) allows a look up file to be specified otherwise the program
uses the environment variable SEQ_LOOKUP_FILE if that is not set it defaults to
the global variable LOOKUP_FILE found in SeqNoise.h currently
“./Data/Tran.dat”. This will work provided the executable is run from the bin
directory to maintain this relative path to the files in../Data.

The option (-v) outputs extra debug information to standard out.

The option (-min) allows a mapping file from a previous PyroDist step to be
input. If used the program will use this information to map denoised sequences
back to the original flowgram ids.

Information on cluster convergence is output to standard out and after running
the program produces a number of files:
1) stub_cd.fa: a fasta file of de-noised sequences. The ids are formed as
“>stub_index_weight” where weight are the number of sequences mapping
to that sequence, and index is just an arbitrary cluster number.

2) stub.mapping: contains a line for each de-noised sequence giving the input
sequence defining the denoised cluster followed by a tab separated list of
input sequences that map to that sequence.

3) directory stub: contains a fasta file for each de-noised sequence, i_index.fa,
of sequences that map to it.

4) Optional on (-min) if a mapping file is input then a file stub_cd.mapping
containing a line for each de-noised sequence giving the id followed by a
tab separated list of original reads that map to it.

This is an MPI program allowing the calculation of distances to spread across
multiple cores and/or nodes.

Example:
mpirun -np 32 SegNoise -in Test s60 cO0l T220.fa -din
Test s60 c01 T220.segdist -1lin Test s60 cO0l T220 S.list

-out Test s60 c01 T220 s30 c08 -s 30.0 -c 0.08 -min
Test s60 cO0l.mapping > Test s60 c01 T220.snout

SplitClusterEven

-din string dat filename
-min string map filename
-tin string tree filename
-s splitsize

-m min size

This program splits up dat files (-din) using a tree generated on unique
sequences (-tin) input as a .tree file. The mapping of unique sequences to reads
in the dat file is specified by a .map file (-min). The tree is the split in such a way
as to maintain a maximum (-s) and minimum (-m) cluster size (measured on
unique reads). The parameters -s 2500 and -m 250 will likely produce dat files of
a good size although you should play around with these. The dat files are placed
in directories labeled C000, ..,COON+ where N is the number of clusters and the +
simply indicates that this will be an aggregation of all small clusters.

SplitClusterClust

-din string dat filename
-min string map filename
-uin string uclust filename
-m integer min size

This program splits up dat files (-din) using output of uclust parsed with Sub.pl.
The mapping of unique sequences to reads in the dat file is specified by a .map
file (-min). The dat files are placed in directories labeled C000, ..,COON+ where N
is the number of clusters and the + simply indicates that this will be an
aggregation of all small clusters.

Scripts:

Some useful Perl scripts are also provided in the Scripts directory:

FlowsFA.pl

This extracts flowgrams from a plain-text flowgram (.sff.txt) file. It takes the
primer as a first argument and an output stub as the second. It reads from
standard input. It should be used for GS FLX reads. For example:

FlowsFA.pl ATTAGATACCC[ACTG]GGTAG ArtificialGSFLX <
Artifici1alGSFLX.sff.txt

.will generate the filtered .dat flowgram file Artificial GSFLX.dat and a fasta file of
the corresponding sequences Artificial GSFLX fa. Filtering requires that a
minimum sequence length of 204 (changed by altering variable $minLength)
including key and primer is achieved before the first noisy signal (0.5-0.7 or no
signal across all four bases). Flowgrams are then truncated at this point. If keys
are used simply pass the entire key-linker-primer sequence to this script or use
SplitKeys.pl described below.

FlowsFA360.pl

This extracts flowgrams from the text translation of a .sff.txt. It takes the primer
as a first argument and an output stub as the second. It reads from standard
input. It should be used for GS FLX reads. For example:

FlowsFA360.pl ATTAGATACCC[ACTG]GGTAG ArtificialGSFLX <
ArtificialGSFLX.sff.txt

.will generate the filtered .dat flowgram file Artificial GSFLX.dat and a fasta file of
the corresponding sequences Artificial GSFLX fa. Filtering requires that a
minimum flowgram length of 360 including key and primer is achieved before
the first noisy signal (0.5-0.7 or no signal across all four bases). All flowgrams are
then truncated at 360. If keys are used simply pass the entire key - linker -
primer sequence to this script or use SplitKeys.pl described below.

FlowsMinMax.pl

This extracts flowgrams from the text translation of a .sff.txt file. It takes the
primer as a first argument and an output stub as the second. It reads from
standard input. It should be used for Titanium reads. For example:

FlowsMinMax.pl ACACACGTCGACTCCTACGGGAGGCAGCAG
TitaniumV3 < TitaniumV3.sff.txt

...will generate the filtered .dat flowgram file TitaniumV3.dat and a fasta file of
the corresponding sequences TitaniumV3.fa for a key ACACACGTCG and primer

ACTCCTACGGGAGGCAGCAG. Filtering requires that a minimum flowgram length
of 360 including key and primer is achieved before the first noisy signal (0.5-0.7
or no signal across all four bases). All flowgrams are then truncated at 720. If
keys are used simply pass the entire key - linker -primer sequence to this script
in upper case or use SplitKeys.pl described below.

CountFasta.pl

Gives total read number mapping to a fasta file with weighted ids. For example:

CountFasta.pl < Test s60 c0l1 cd.fa

Truncate.pl
Truncates sequences in a fasta file e.g.:

Truncate.pl 220 < Test s60 cOl cd.fa >
Test s60 c01 T220.fa

SplitKeys.pl

Separates out an sff file read from standard input according to barcode
sequences. Requires a file keys.csv with format:

SampleNamel, Barcodel

SampleNameN, BarcodeN

The primer is the first argument of the script. The second is the keys.csv file. This
script generates .raw files that then have to be filtered and reformatted using
Clean360.pl. A shell script Clean.sh shows how to do this for multiple raw data
files. Reads that do not match to any tag are output to standard error. Any linkers
must be included in the barcodes.

./SplitKeys.pl TGCTGCCTCCCGTAGGAGT keys.csv <
FVONWLFOl.sff.txt 2> Err.fa

SplitKeysFlower.pl

Separates out a flower file generated generated by Ketil Malde’s program Flower
(http://blog.malde.org/index.php/2009/07 /03 /a-set-of-tools-for-working-
with-454-sequences). It reads from standard input according to barcode
sequences. Requires a file keys.csv with format:

SampleNamel, Barcodel

SampleNameN, BarcodeN

The primer is the first argument of the script. The second is the keys.csv file. This
script generates .raw files that then have to be filtered and reformatted using
Clean360.pl. A shell script Clean.sh shows how to do this for multiple raw data
files. Reads that do not match to any tag are output to standard error. Any linkers
must be included in the barcodes:

./SplitKeysFlower.pl TGCTGCCTCCCGTAGGAGT Keys.csv <
FVONWLFOl.flower.txt 2> Err.fa

SubsampleDat.pl

Randomly subsamples a .dat-file according to the specified number of reads. To
produce the .dat-file Sub1000.dat from All.dat with 100 clean reads, use e.g.:

SubsampleDat.pl All.dat 1000 > Subl000.dat

Qiime_Typical.pl

Generates OTU consensus sequences with format suitable for Qiime. Takes
fractional sequence difference for OTU construction as the first argument, a fasta
file of denoised sequences for the second and list file from NDist for the third. See
the tutorial for more information.

Example:

./Qiime Typical.pl 0.03 All Good.fa All Good.list >
All Good CO3 Q.fa

Qiime OTU.pl

Generates Qiime OTU tables. Takes fractional sequence difference for OTU
construction as the first argument, RDP taxonomic classifications as second and
sample suffix for third. Generate classifications from using Qiime using:

assign_ taxonomy.py -i All Good CO03 Q.fa
Example:
./Qiime OTU.pl 0.03

rdp assigned taxonomy/All Good CO03 Q tax assignments.txt
TS < All Good.list > All Good C03.giime

The file All_Good_C03.qiime can now be used directly in Qiime as an OTU table.

