
An Introduction to PDF with CamlPDF
John Whitington

January 12, 2022

Coherent Graphics Ltd

For bug reports, feature requests and comments, email
contact@coherentgraphics.co.uk

©2010-2022 Coherent Graphics Limited. All rights reserved.

Adobe, Acrobat, Adobe PDF, Adobe Reader and PostScript are registered trademarks of
Adobe Systems Incorporated.

A First Program

You will require ocamlfind to be installed on your system. It comes with any modern
installation of OCaml.

To build CamlPDF, navigate to the source directory and type

make

You can then install CamlPDF:

make install

To build the examples, navigate to the examples folder and type

make

Now run a simple example to build the file hello.pdf

./pdfhello

As an alternative to compiling CamlPDF yourself, you may use the OPAM package manager,
if you have it installed:

opam install camlpdf

Then (or otherwise) we may load CamlPDF into any other top level:

ocaml
Objective Caml

#use "topfind";;
- : unit = ()
Findlib has been successfully loaded. Additional directives:

#require "package";; to load a package
#list;; to list the available packages
#camlp4o;; to load camlp4 (standard syntax)
#camlp4r;; to load camlp4 (revised syntax)
#predicates "p,q,...";; to set these predicates
Topfind.reset();; to force that packages will be

reloaded
#thread;; to enable threads

- : unit = ()
#require "camlpdf";;

1

/Users/john/.opam/4.00.1/lib/ocaml/unix.cma: loaded
/Users/john/.opam/4.00.1/lib/ocaml/bigarray.cma: loaded
/Users/john/.opam/4.00.1/lib/camlpdf: added to search path
/Users/john/.opam/4.00.1/lib/camlpdf/camlpdf.cma: loaded

#

The Pdfread module allows us to load PDF files into memory. The raw PDF data is parsed
into a structured OCaml value of type Pdf.pdfdoc:

let pdf = Pdfread.pdf_of_file None None "hello.pdf";;
val pdf : Pdf.t =

{Pdf.major = 1; Pdf.minor = 1; Pdf.root = 2;
Pdf.objects =
{Pdf.maxobjnum = 4; Pdf.parse = Some <fun>;
Pdf.pdfobjects = <abstr>;
Pdf.object_stream_ids = <abstr>};

Pdf.trailerdict =
Pdf.Dictionary
[("/Root", Pdf.Indirect 2);
("/ID",
Pdf.Array
[Pdf.String "<elided>";
Pdf.String "<elided>"]);

("/Size", Pdf.Integer 4)]}

Looking at the parts of the Pdf.t record type:

• Pdf.major and Pdf.minor - the parts of the PDF version number. Here, PDF Version 1.1

• Pdf.root - the object number of the ’root object’ of the PDF (A PDF is a directed graph
of objects, indexed by number)

• Pdf.objects - the PDF objects

• Pdf.trailerdict - the trailer dictionary. This is a distinguished PDF object containing a
number of commonly used per-file items. Pdf.trailerdict has type Pdf.pdfobject, which
represents all possible PDF data.

Diversion: A Look at hello.pdf

Here is the contents of the file hello.pdf, as you might see it in a text editor, annotated
with some explanatory comments.

2

%PDF-1.1 Header
%%$ˆ@
1 0 obj Object 1. . .
<< /Type /Pages /Kids [3 0 R] /Count 1 >> . . . which is the catalogue of pages
endobj
2 0 obj This object is a stream, which is a dictionary plus some binary data
<< /Length 102 >>
stream Usually compressed, but plain here for ease of reading
1.000000 0.000000 0.000000 1.000000 50.000000 770.000000 cm
BT /F0 36.000000 Tf (Hello, World!) Tj ET The page content, a bit like PostScript
endstream
endobj
3 0 obj The page object,
<< /Type /Page

/Parent 1 0 R The syntax ”1 0 R” means a reference to Object 1
/Resources

<< /Font The font dictionary
<< /F0
<< /Type /Font /Subtype /Type1 /BaseFont /Times-Italic >>

>> >>
/MediaBox [0.000000 0.000000 595.275591 841.889764] The page dimensions
/Rotate 0
/Contents [2 0 R] >> Reference to contents in object 2

endobj
4 0 obj
<< /Type /Catalog /Pages 1 0 R >> The root object
endobj
xref The cross-reference table, listing the byte offsets of each object for random access.
0 5
0000000000 65535 f
0000000015 00000 n
0000000074 00000 n
0000000227 00000 n
0000000449 00000 n
trailer The trailer dictionary
<< /Size 5 /Root 4 0 R /ID [(<elided>) (<elided>)] >>
startxref
498 The trailer
%%EOF

Saving the Document

The Pdf.t data type is a record of mutable values. Let’s change the PDF Version number and
write the file.

pdf.Pdf.minor <- 2;;
- : unit = ()
Pdfwrite.pdf_to_file pdf "hello2.pdf";;

3

- : unit = ()

Next Steps

The objects in a PDF document are of type Pdf.pdfobject:

type stream = Stream data. Either in memory or still in the file
| Got of Utility.bytestream
| ToGet of Pdfio.input * int * int input, offset, length

type pdfobject =
| Null
| Boolean of bool
| Integer of int
| Real of float
| String of string
| Name of string
| Array of pdfobject list
| Dictionary of (string * pdfobject) list
| Stream of (pdfobject * stream) ref Stream data (see above)
| Indirect of int A reference to another object

For instance the PDF object in the file:

3 0 obj
<< /Type /Page

/Parent 1 0 R
/MediaBox [0.000000 0.000000 595.275591 841.889764]
/Rotate 0
/Contents [2 0 R]

>>
end

is represented as object number 3 with the Pdf.t instance:

Dictionary
["/Type", Name "/Page";
"/Parent", Indirect 1;
"/MediaBox",

Array [Real 0.; Real 0.; Real 595.275591; Real 841.889764];
"/Rotate", Integer 0;

4

"/Contents", Array [Indirect 2]]

Working with Pages

Introduce a command to show the current document, using whatever command opens (or
updates) a PDF view on your system:

let show pdf =
Pdfwrite.pdf_to_file pdf "temp.pdf";
ignore (Sys.command "open temp.pdf");; Customize here

The Pdfpage module deals with PDF pages. We can get the list of pages from a document:

let pages = Pdfpage.pages_of_pagetree pdf;;
val pages : Pdfpage.t list =

[{Pdfpage.content = [Pdf.Indirect 4];
Pdfpage.mediabox =
Pdf.Array
[Pdf.Integer 0; Pdf.Integer 0; Pdf.Real 595.275590551;
Pdf.Real 841.88976378];

Pdfpage.resources =
Pdf.Dictionary
[("/Font",
Pdf.Dictionary
[("/F0",
Pdf.Dictionary
[("/Type", Pdf.Name "/Font");
("/Subtype", Pdf.Name "/Type1");
("/BaseFont", Pdf.Name "/Times-Italic")])])];

Pdfpage.rotate =
Pdfpage.Rotate0; Pdfpage.rest = Pdf.Dictionary []}]

Each page is a record containing five things:

• Pdfpage.content An ordered list of pdf objects representing the one or more streams
containing the graphical data for the page.

• Pdfpage.mediabox The page dimensions

• Pdfpage.resources The resources dictionary for a page, which contains the fonts,
colour spaces and so on for the page.

• Pdfpage.rotate The viewing rotation for the page.

• Pdfpage.rest The rest of the page dictionary (i.e that which has not been separated
into the items above).

5

Let’s change the viewing rotation to 90 degrees:

let page = {(List.hd pages) with Pdfpage.rotate = Pdfpage.Rotate90};;
val page : Pdfpage.t = ...
let pdf = Pdfpage.change_pages false pdf [page];;
val pdf : Pdf.t = ...
show pdf;;
- : unit

Now change the rotation back: we’re going to work with graphics next, and the viewing
roation would confuse:

let page = List.hd pages;;
val page : Pdfpage.t = ...
let pdf = Pdfpage.change_pages false pdf [page];;
val pdf : Pdf.t = ...
show pdf;;
- : unit

Graphics and Text

The Pdfops module represents the graphical content of each page, which is formed of
PostScript-like operators which draw the page. Let’s get the operator list from the page:

let ops =
Pdfops.parse_operators
pdf page.Pdfpage.resources page.Pdfpage.content;;

val ops : Pdfops.t list =
[Pdfops.Op_cm
{Transform.a = 1.; Transform.b = 0.;
Transform.c = 0.; Transform.d = 1.;
Transform.e = 50.; Transform.f = 770.};

Pdfops.Op_BT;
Pdfops.Op_Tf ("/F0", 36.);
Pdfops.Op_Tj "Hello, World!";
Pdfops.Op_ET]

The Op cm operator alters the graphics matrix to position the text. Op BT and Op ET mark
the beginning and end of a text section. Op Tf chooses 36pt Times Italic (which is font F0 in
the page’s font dictionary in its resources) and Op Tj paints the text.

Let’s add operators to underline the text – Op m to move, Op l to draw a line and Op S
to stroke the path. We calculate the width of the underline using the Pdfstandard14 and

6

Pdftext modules to get the raw width of the string in millipoints, adjusting for font size
and converting to points.

let width =
Pdfstandard14.textwidth false Pdftext.TimesItalic "Hello, World!";;

val width : int = 5555

let actual_width = float width *. 36. /. 1000.;;
val actual_width : float = 199.98

let ops' =
ops @
[Pdfops.Op_m (0., 0.);
Pdfops.Op_l (actual_width, 0.);
Pdfops.Op_S];;

val ops' : Pdfops.t list = ...

and make the new content stream:

let stream = Pdfops.stream_of_ops ops';;
val stream : Pdf.pdfobject =

Pdf.Stream
{contents =
(Pdf.Dictionary [("/Length", Pdf.Integer 72)], Pdf.Got <abstr>)}

and add it to the page, and replace the page in the PDF.

let page' = {page with Pdfpage.content = [stream]};;
val page' : Pdfpage.t = ...

let pdf = Pdfpage.change_pages false pdf [page'];;
val pdf : Pdf.t = ...

and show it:

show pdf;;
- : unit ()

7

Next Steps

CamlPDF is a large piece of software. A good way to get to know it is to study the examples
shipped with CamlPDF:

pdfhello.ml Build a ”Hello, World!” PDF from scratch
pdfdecomp.ml Command line utility to decompress a PDF
pdfmerge.ml Command line utility to merge PDF files
pdfdraft.ml Command line utility to make draft documents
pdftest.ml Reads and interprets a file to test CamlPDF’s major functionality
pdfencrypt.ml Command line utility to encrypt a PDF file

Summary of CamlPDF modules:

Module Description
Pdfutil General Functions.
Pdfio Generic Input/Ouput from/to channels, strings, files etc.
Pdftransform Affine Transformations in Two Dimensions
Pdfunits Units and Unit Conversion
Pdfpaper Media Sizes
Pdf Representing PDF Files in Memory
Pdfcrypt Decrypting PDF files
Pdfflate Interface to miniz.c via Zlib-like functions.
Pdfcodec Encoding and Decoding PDF Streams
Pdfwrite Writing PDF Files
Pdfgenlex A very fast lexer for very basic tokens.
Pdfread Reading PDF Files
Pdfjpeg PDF Jpeg Support
Pdfops Parsing PDF Graphics Streams
Pdfdest Destinations
Pdfmarks Bookmarks
Pdfpagelabels Page Labels
Pdfpage Page-level functionality
Pdfannot Annotations
Pdffun Parsing and Evaluating PDF Functions.
Pdfspace Colour Spaces
Pdfimage Extract Images.
Pdfafm Parse Adobe Font Metrics files
Pdfafmdata AFM Data for the standard 14 fonts
Pdfglyphlist Glyph Lists
Pdftext Parsing fonts and extracting text from content streams and PDF strings
Pdfstandard14 Standard PDF Fonts
Pdfgraphics Structured Graphics.
Pdfshapes Basic Shapes
Pdfdate Representing and Parsing PDF Dates
Pdfocg Optional Content Groups.
Pdfcff Convert a CFF Type 1 Font to a Type 3 Font.
Pdftype1 Convert an PostScript Type 1 Font to a Type 3 Font.
Pdftruetype Convert a TrueType font to a Type 3 Font.
Pdftype0 Type 0 font support
Pdfmerge Merge PDF files, optionally rotating some pages.

The HTML documentation for CamlPDF is built in doc/html/camlpdf when CamlPDF

8

is built. You can, of course, eschew the top level and compile projects using the CamlPDF
library directly: this gives native speeds and self-contained executables.

Further Reading

The author’s book is a suitable introduction to the PDF file format:
http://shop.oreilly.com/product/0636920021483.do

For any serious work, you will need the PDF Reference Manual
http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf

For an introduction to OCaml, the author’s book is available:
http://ocaml-book.com or at Amazon.com

9

http://shop.oreilly.com/product/0636920021483.do
http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf
http://ocaml-book.com

