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Introduction

CSDP is a software package for solving semidefinite programming problems. The
algorithm is a predictor–corrector version of the primal–dual barrier method of
Helmberg, Rendl, Vanderbei, and Wolkowicz [4]. A more detailed, but now
somewhat outdated description of the algorithms in CSDP can be found in [1].
CSDP is written in C for efficiency and portability. On systems with multiple
processors and shared memory, CSDP can run in parallel. CSDP uses OpenMP
directives in the C source code to tell the compiler how to parallelize various
loops. The parallel implementation is described in [2]. The code is designed
to make use of highly optimized linear algebra routines from the LAPACK and
BLAS libraries.

CSDP also has a number of features that make it flexible. CSDP can work
with general symmetric matrices or with matrices that have defined block di-
agonal structure. CSDP is designed to handle constraint matrices with general
sparse structure. The code takes advantage of this structure in efficiently con-
structing the system of equations that is solved at each iteration of the algo-
rithm.

In addition to its default termination criteria, CSDP includes a feature that
allows the user to terminate the solution process after any iteration. For exam-
ple, this feature has been used within a branch and bound code for maximum
independent set problems to terminate the bounding calculations as soon as a
bound has been obtained that is good enough to fathom the current note. The
library also contains routines for writing SDP problems and solutions to files
and reading problems and solutions from files.

A stand alone solver program is included for solving SDP problems that have
been written in the SDPA sparse format [3]. An interface to MATLAB and the
open source MATLAB clone Octave is also provided. This interface can be used
to solve problems that are in the format used by the SeDuMi [6].

This document describes how to use the stand alone solver, MATLAB and
Octave interface, and library routines. For detailed instructions on how to
compile and install CSDP see the INSTALL file in the main directory.
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The SDP Problem

CSDP solves semidefinite programming problems of the form

max tr (CX)
A(X) = a

X � 0
(1)

where

A(X) =


tr (A1X)
tr (A2X)

. . .
tr (AmX)

 . (2)

Here X � 0 means that X is positive semidefinite. All of the matrices Ai, X,
and C are assumed to be real and symmetric.

The dual of this SDP is

min aT y
AT (y)− C = Z

Z � 0
(3)

where

AT (y) =

m∑
i=1

yiAi. (4)

Other semidefinite programming packages use slight variations on this primal–
dual pair. For example, the primal–dual pair used in SDPA interchanges the
primal and dual problems.

Users of CSDP can specify their own termination criteria. However, the
default criteria are that

tr(XZ)

1+|aT y|+|tr(CX)| < 1.0× 10−8

‖A(x)−a‖2
1+‖a‖2 < 1.0× 10−8

‖AT (y)−C−Z‖F
1+‖C‖F < 1.0× 10−8

X,Z � 0.

(5)

Note that for feasible primal and dual solutions, aT y − tr(CX) = tr(XZ).
Thus the first of these criteria insures that the relative duality gap is small. In
practice, there are sometimes solutions which satisfy our primal and dual feasi-
bility tolerances but have duality gaps which are not close to tr(XZ). In some
cases, the duality gap may even become negative. Because of this ambiguity, we
use the tr(XZ) gap instead of the difference between the objective functions.
An option in the param.csdp file allows CSDP to use the difference of the primal
objective functions instead of the tr(XZ) gap.

The matrices X and Z are considered to be positive definite when their
Cholesky factorizations can be computed. In practice, this is somewhat more
conservative than simply requiring all eigenvalues to be nonnegative.
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The Seventh DIMACS Implementation Challenge used a slightly different
set of error measures [5]. For convenience in benchmarking, CSDP includes
these DIMACS error measures in its output.

To test for primal infeasibility, CSDP checks the inequality

−aT y
‖AT (y)− Z‖F

> 1.0× 108. (6)

If CSDP detects that a problem is primal infeasible, then it will announce this
in its output and return a dual solution with aT y = −1, and ‖AT (y)−Z‖ very
small. This acts as a certificate of primal infeasibility.

Similarly, CSDP tests for dual infeasibility by checking

tr(CX)

‖A(X)‖2
> 1.0× 108. (7)

If CSDP detects that a problem is dual infeasible, it announces this in its output
and returns a primal solution with tr(CX) = 1, and ‖A(X)‖ small. This acts
as a certificate of the dual infeasibility.

The tolerances for primal and dual feasibility and the relative duality gap
can be changed by editing CSDP’s parameter file. See the following section on
using the stand alone solver for a description of this parameter file.

Using the stand alone solver

CSDP includes a program which can be used to solve SDP’s that have been
written in the SDPA sparse format. Usage is

csdp <problem file> [<final solution>] [<initial solution>]

where <problem file> is the name of a file containing the SDP problem in
SDPA sparse format, final solution is the optional name of a file in which
to save the final solution, and initial solution is the optional name of a file
from which to take the initial solution.

The following example shows how CSDP would be used to solve a test prob-
lem.

>csdp theta1.dat-s

CSDP 6.2.0

Iter: 0 Ap: 0.00e+00 Pobj: 1.4644661e+04 Ad: 0.00e+00 Dobj: 0.0000000e+00

Iter: 1 Ap: 9.31e-01 Pobj: 5.7513865e+03 Ad: 1.00e+00 Dobj: 8.0172003e+01

Iter: 2 Ap: 9.21e-01 Pobj: 2.3227402e+02 Ad: 1.00e+00 Dobj: 8.2749235e+01

Iter: 3 Ap: 9.30e-01 Pobj: 1.0521019e+01 Ad: 1.00e+00 Dobj: 8.4447722e+01

Iter: 4 Ap: 1.00e+00 Pobj: 2.5047625e+00 Ad: 1.00e+00 Dobj: 7.2126480e+01

Iter: 5 Ap: 1.00e+00 Pobj: 7.5846337e+00 Ad: 1.00e+00 Dobj: 4.2853659e+01

Iter: 6 Ap: 1.00e+00 Pobj: 1.5893126e+01 Ad: 1.00e+00 Dobj: 3.0778169e+01

Iter: 7 Ap: 1.00e+00 Pobj: 1.9887401e+01 Ad: 1.00e+00 Dobj: 2.4588662e+01
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Iter: 8 Ap: 1.00e+00 Pobj: 2.1623330e+01 Ad: 1.00e+00 Dobj: 2.3465172e+01

Iter: 9 Ap: 1.00e+00 Pobj: 2.2611983e+01 Ad: 1.00e+00 Dobj: 2.3097049e+01

Iter: 10 Ap: 1.00e+00 Pobj: 2.2939498e+01 Ad: 1.00e+00 Dobj: 2.3010908e+01

Iter: 11 Ap: 1.00e+00 Pobj: 2.2996259e+01 Ad: 1.00e+00 Dobj: 2.3000637e+01

Iter: 12 Ap: 1.00e+00 Pobj: 2.2999835e+01 Ad: 1.00e+00 Dobj: 2.3000020e+01

Iter: 13 Ap: 1.00e+00 Pobj: 2.2999993e+01 Ad: 1.00e+00 Dobj: 2.2999999e+01

Iter: 14 Ap: 1.00e+00 Pobj: 2.3000000e+01 Ad: 1.00e+00 Dobj: 2.3000000e+01

Success: SDP solved

Primal objective value: 2.3000000e+01

Dual objective value: 2.3000000e+01

Relative primal infeasibility: 5.55e-17

Relative dual infeasibility: 3.93e-09

Real Relative Gap: 7.21e-09

XZ Relative Gap: 7.82e-09

DIMACS error measures: 5.55e-17 0.00e+00 1.00e-07 0.00e+00 7.21e-09 7.82e-09

Elements time: 0.001091

Factor time: 0.000620

Other time: 0.016636

Total time: 0.018348

One line of output appears for each iteration of the algorithm, giving the
iteration number, primal step size (Ap), primal objective value (Pobj), dual step
size (Ad), and dual objective value (Dobj). The last eight lines of output show
the primal and dual optimal objective values, the XZ duality gap, the actual
duality gap, the relative primal and dual infeasibility in the optimal solution.

The last four lines give the time in seconds used by various steps in the
algorithm. The first line, “Elements” shows the time spent in constructing the
Schur complement matrix. The second line, “Factor” shows the time spent in
factoring the Schur complement matrix. The third line, “Other” shows the time
spent in all other operations. The fourth line gives the total time used in solving
the problem. Note that the times given here are “wall clock” times, not CPU
time. On a system that is running other programs, the wall clock time may be
considerably larger than the CPU time. On multiprocessor systems, the wall
clock time will not include all of the CPU time used by the different processors.
The reported time will typically vary on repeated runs of CSDP, particularly
for small problems like the one solved here.

CSDP searches for a file named “param.csdp” in the current directory. If
no such file exists, then default values for all of CSDP’s parameters are used. If
there is a parameter file, then CSDP reads the parameter values from this file.
A sample file containing the default parameter values is given below.

axtol=1.0e-8

atytol=1.0e-8

objtol=1.0e-8

pinftol=1.0e8

dinftol=1.0e8
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maxiter=100

minstepfrac=0.90

maxstepfrac=0.97

minstepp=1.0e-8

minstepd=1.0e-8

usexzgap=1

tweakgap=0

affine=0

printlevel=1

perturbobj=1

fastmode=0

The first three parameters, axtol, atytol, and objtol are the tolerances
for primal feasibility, dual feasibility, and relative duality gap. The parameters
pinftol and dinftol are tolerances used in determining primal and dual infea-
sibility. The maxiter parameter is used to limit the total number of iterations
that CSDP may use. The minstepfrac and maxstepfrac parameters deter-
mine how close to the edge of the feasible region CSDP will step. If the primal
or dual step is shorter than minstepp or minstepd, then CSDP declares a
line search failure. If parameter usexzgap is 0, then CSDP will use the ob-
jective function duality gap instead of the tr(XZ) gap. If tweakgap is set to
1, and usexzgap is set to 0, then CSDP will attempt to “fix” negative duality
gaps. If parameter affine is set to 1, then CSDP will take only primal–dual
affine steps and not make use of the barrier term. This can be useful for some
problems that do not have feasible solutions that are strictly in the interior of
the cone of semidefinite matrices. The printlevel parameter determines how
much debugging information is output. Use printlevel=0 for no output and
printlevel=1 for normal output. Higher values of printlevel will generate
more debugging output. The perturbobj parameter determines whether the
objective function will be perturbed to help deal with problems that have un-
bounded optimal solution sets. If perturbobj is 0, then the objective will not
be perturbed. If perturbobj is 1, then the objective function will be perturbed
by a default amount. Larger values of perturbobj (e.g. 100.0) increase the size
of the perturbation. This can be helpful in solving some difficult problems. The
fastmode parameter determines whether or not CSDP will skip certain time
consuming operations that slightly improve the accuracy of the solutions. If
fastmode is set to 1, then CSDP may be somewhat faster, but also somewhat
less accurate.

Calling CSDP from MATLAB or Octave

An interface to the stand alone solver from MATLAB or Octave is included
in CSDP. This requires MATLAB 6.5 or later) or Octave 2.9.5 or later. The
interface accepts problems in the format used by the MATLAB package SeDuMi
1.05. The usage is
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%

% [x,y,z,info]=csdp(At,b,c,K,pars,x0,y0,z0)

%

% Uses CSDP to solve a problem in SeDuMi format.

%

% Input:

% At, b, c, K SDP problem in SeDuMi format.

% pars CSDP parameters (optional parameter.)

% x0,y0,z0 Optional starting point.

%

% Output:

%

% x, y, z solution.

% info CSDP return code.

% info=100 indicates a failure in the MATLAB

% interface, such as inability to write to

% a temporary file or read back the solution.

%

The following example shows the solution of a sample problem using this
interface. To make the example more interesting, we’ve asked CSDP to find
a solution with a relative duality gap smaller than 1.0e-9 instead of the usual
1.0e-8.

>> load control1.mat

>> whos

Name Size Bytes Class Attributes

At 125x21 11376 double sparse

K 1x1 192 struct

ans 2x1 16 double

b 21x1 168 double

c 125x1 112 double sparse

>> pars.objtol=1.0e-9

pars =

objtol: 1.0000e-09

>> [x,y,z,info]=csdp(At,b,c,K);

Transposing A to match b

Number of constraints: 21

Number of SDP blocks: 2

Number of LP vars: 0

Iter: 0 Ap: 0.00e+00 Pobj: 3.6037961e+02 Ad: 0.00e+00 Dobj: 0.0000000e+00
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Iter: 1 Ap: 9.56e-01 Pobj: 3.7527534e+02 Ad: 9.60e-01 Dobj: 6.4836002e+04

Iter: 2 Ap: 8.55e-01 Pobj: 4.0344779e+02 Ad: 9.67e-01 Dobj: 6.9001508e+04

Iter: 3 Ap: 8.77e-01 Pobj: 1.4924982e+02 Ad: 1.00e+00 Dobj: 6.0425319e+04

Iter: 4 Ap: 7.14e-01 Pobj: 8.2819408e+01 Ad: 1.00e+00 Dobj: 1.2926534e+04

Iter: 5 Ap: 8.23e-01 Pobj: 4.7411688e+01 Ad: 1.00e+00 Dobj: 4.9040115e+03

Iter: 6 Ap: 7.97e-01 Pobj: 2.6300212e+01 Ad: 1.00e+00 Dobj: 1.4672743e+03

Iter: 7 Ap: 7.12e-01 Pobj: 1.5215577e+01 Ad: 1.00e+00 Dobj: 4.0561826e+02

Iter: 8 Ap: 8.73e-01 Pobj: 7.5119215e+00 Ad: 1.00e+00 Dobj: 1.7418715e+02

Iter: 9 Ap: 9.87e-01 Pobj: 5.3076518e+00 Ad: 1.00e+00 Dobj: 5.2097312e+01

Iter: 10 Ap: 1.00e+00 Pobj: 7.8594672e+00 Ad: 1.00e+00 Dobj: 2.2172435e+01

Iter: 11 Ap: 8.33e-01 Pobj: 1.5671237e+01 Ad: 1.00e+00 Dobj: 2.1475840e+01

Iter: 12 Ap: 1.00e+00 Pobj: 1.7250217e+01 Ad: 1.00e+00 Dobj: 1.8082715e+01

Iter: 13 Ap: 1.00e+00 Pobj: 1.7710018e+01 Ad: 1.00e+00 Dobj: 1.7814069e+01

Iter: 14 Ap: 9.99e-01 Pobj: 1.7779600e+01 Ad: 1.00e+00 Dobj: 1.7787170e+01

Iter: 15 Ap: 1.00e+00 Pobj: 1.7783579e+01 Ad: 1.00e+00 Dobj: 1.7785175e+01

Iter: 16 Ap: 1.00e+00 Pobj: 1.7784494e+01 Ad: 1.00e+00 Dobj: 1.7784708e+01

Iter: 17 Ap: 1.00e+00 Pobj: 1.7784610e+01 Ad: 1.00e+00 Dobj: 1.7784632e+01

Iter: 18 Ap: 1.00e+00 Pobj: 1.7784626e+01 Ad: 1.00e+00 Dobj: 1.7784627e+01

Iter: 19 Ap: 9.60e-01 Pobj: 1.7784627e+01 Ad: 9.60e-01 Dobj: 1.7784627e+01

Success: SDP solved

Primal objective value: 1.7784627e+01

Dual objective value: 1.7784627e+01

Relative primal infeasibility: 2.06e-09

Relative dual infeasibility: 7.31e-10

Real Relative Gap: 7.13e-10

XZ Relative Gap: 1.51e-09

DIMACS error measures: 2.06e-09 0.00e+00 1.65e-09 0.00e+00 7.13e-10 1.51e-09

Elements time: 0.027664

Factor time: 0.011323

Other time: 1.187727

Total time: 1.226715

3.416u 0.015s 0:01.43 239.1% 0+0k 7688+16io 24pf+0w

>> info

info =

0
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The writesdpa function can be used to write out a problem in SDPA sparse
format.

% This function takes a problem in SeDuMi MATLAB format and writes it out

% in SDPA sparse format.

%

% Usage:

%

% ret=writesdpa(fname,A,b,c,K,pars)

%

% fname Name of SDPA file, in quotes

% A,b,c,K Problem in SeDuMi form

% pars Optional parameters.

% pars.printlevel=0 No printed output

% pars.printlevel=1 (default) Some printed output.

%

% ret ret=0 on success, ret=1 on failure.

%

Problems in the SeDuMi format may involve “free” variables. A free variable
can be converted into the difference of two non–negative variables using the
convertf function.

%

% [A,b,c,K]=convertf(A,b,c,K)

%

% converts free variables in a SeDuMi problem into nonnegative LP variables.

%

Using the subroutine interface to CSDP

Storage Conventions

The matrices C, X, and Z are treated as block diagonal matrices. The dec-
larations in the file blockmat.h describe the block matrix data structure. The
blockmatrix structure contains a count of the number of blocks and a pointer
to an array of records that describe individual blocks. The individual blocks
can be matrices of size blocksize or diagonal matrices in which only a vector
of diagonal entries is stored.

Individual matrices within a block matrix are stored in column major order
as in Fortran. The ijtok() macro defined in index.h can be used to convert
Fortran style indices into an index into a C vector. For example, if A is stored
as a Fortran array with leading dimension n, element (i,j) of A can be accessed
within a C program as A[ijtok(i,j,n)].

The following table demonstrates how a 3 by 2 matrix would be stored under
this system.

8



C index Fortran index
A[0] A(1,1)
A[1] A(2,1)
A[2] A(3,1)
A[3] A(1,2)
A[4] A(2,2)
A[5] A(3,2)

Vectors are stored as conventional C vectors. However, indexing always
starts with 1, so the [0] element of every vector is wasted. Most arguments
are described as being of size n or m. Since the zeroth element of the vector is
wasted, these vectors must actually be of size n+1 or m+1.

The constraint matrices Ai are stored in a sparse form. The array con-
straints contains pointers which point to linked lists of structures, with one
structure for each block of the sparse matrix. The sparseblock data structures
contain pointers to arrays which contain the entries and their i and j indices.

For an example of how to setup these data structures, refer to the example
directory in the CSDP distribution. This directory contains a program that
solves the very small SDP

max tr (CX)
tr A1X = 1
tr A2X = 2

X � 0

(8)

where

C =



2 1
1 2

3 0 1
0 2 0
1 0 3

0
0


(9)

A1 =



3 1
1 3

0 0 0
0 0 0
0 0 0

1
0


(10)
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A2 =



0 0
0 0

3 0 1
0 4 0
1 0 5

0
1


. (11)

In this problem, the X, Z, A1, A2 and C matrices have three blocks. The
first block is a 2 by 2 matrix. The second block is a 3 by 3 matrix. The third
block is a diagonal block with 2 entries.

In addition to setting up and solving this problem, the example program
calls the write prob() routine to produce a file containing the SDP problem in
SDPA sparse format. This is stored in the file prob.dat-s.

2

3

2 3 -2

1.000000000000000000e+00 2.000000000000000000e+00

0 1 1 1 2.000000000000000000e+00

0 1 1 2 1.000000000000000000e+00

0 1 2 2 2.000000000000000000e+00

0 2 1 1 3.000000000000000000e+00

0 2 1 3 1.000000000000000000e+00

0 2 2 2 2.000000000000000000e+00

0 2 3 3 3.000000000000000000e+00

1 1 1 1 3.000000000000000000e+00

1 1 1 2 1.000000000000000000e+00

1 1 2 2 3.000000000000000000e+00

1 3 1 1 1.000000000000000000e+00

2 2 1 1 3.000000000000000000e+00

2 2 2 2 4.000000000000000000e+00

2 2 3 3 5.000000000000000000e+00

2 2 1 3 1.000000000000000000e+00

2 3 2 2 1.000000000000000000e+00

The 2 in the first line indicates that this problem has two constraints. The 3 in
the second line indicates that there are three blocks in the X and Z matrices.
The third line gives the sizes of the three blocks. Note that the third block’s
size is given as -2. The minus sign indicates that this is a diagonal block. The
fourth line gives the values of the right hand sides of the two constraints.

The remaining lines in the file describe the entries in the C, A1, and A2

matrices. The first number in each line is the number of the matrix, with 0
for the C matrix. The second number specifies a block within the matrix. The
third and fourth numbers give the row and column of a nonzero entry within
this block. The fifth number gives the actual value at that position within the
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2
1

2
1

3
0
1
0
2
0
1
0
3

2

3

2
−−
−−
−−

MATRIX

MATRIX

DIAG

−
0
0

3

Figure 1: The C matrix.

Block 2 Block 3

Block 1 Block 3

−−

A1

A2

Figure 2: The constraints.

block. Comparing this file to the problem statement above can be helpful in
understanding the SDPA sparse file format.

Figure 1 shows a graphical representation of the data structure that holds
the C matrix. Notice that individual matrix blocks of the C matrix are stored
as Fortran arrays and that the diagonal block is stored as a vector, with the 0
entry unused. The data structures for X and Z are similar.

Figure 2 shows the overall structure of the constraints. There is a vector
of pointers to linked lists of constraint blocks. The 0th entry in this array is
ignored. Blocks that contain only zero entries are not stored in the linked lists.
Figure 3 shows the detail of the data structure for block 1 of the constraint
matrix A1.
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iindices

jindices

constraintnum

blocknum

blocksize

entries

1

2

1

−−

3

1

3

−−

−−

1

2

2

1

1

2

Figure 3: Block 1 of A1.
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After solving the problem, the example program outputs the solution to
prob.sol using the write sol() routine. The output produced on different com-
puters might vary because of floating point round–off differences. However, the
following output is typical.

7.499999999674811235e-01 9.999999995736339464e-01

1 1 1 1 2.500000018710683558e-01

1 1 1 2 -2.500000000325189320e-01

1 1 2 2 2.500000018710683558e-01

1 2 1 1 6.895272851149165827e-10

1 2 1 3 -4.263660251297748376e-10

1 2 2 2 2.000000000263161049e+00

1 2 3 3 1.999999999836795217e+00

1 3 1 1 7.500000019361059422e-01

1 3 2 2 1.000000001542258765e+00

2 1 1 1 1.250000001467082567e-01

2 1 1 2 1.249999992664581755e-01

2 1 2 2 1.250000001467082567e-01

2 2 1 1 6.666669670820890570e-01

2 2 1 3 -4.518334811445142147e-07

2 2 2 2 2.200629338637236883e-10

2 2 3 3 2.200635108933231998e-10

2 3 1 1 5.868341556035494699e-10

2 3 2 2 4.401258478508541047e-10

The first line of the file gives the optimal y values. The lines that start with
”1 ” give the nonzero entries in the optimal Z matrix. As in the SDPA input file
there are five numbers per line. The first number is the number of the matrix,
where 1 is used for Z and 2 is used for X. The second number specifies a block
within the matrix. The third and fourth numbers are the row and column within
the block. The final number is the actual value at the position in the block. For
example,

2 2 1 3 -4.518334811445142147e-07

means that in the 1st row, third column of block 2 of the X matrix, the entry
is −4.518334811445142147 × 10−7. Since the matrices are symmetric, we only
record the entries in the upper triangle of the matrix. The same entry will also
appear in row 3, column 1.

So, the optimal solution to the example problem is (rounding the numbers
off to two or three digits)

y =
[

0.75 1.00
]

(12)
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Z =



0.25 −0.25
−0.25 0.25

0 0 0
0 2.00 0
0 0 2.00

0.75
1.00


(13)

X =



0.125 0.125
0.125 0.125

0.667 0 0
0 0 0
0 0 0

0
0


(14)

Storage Requirements

CSDP requires storage for a number of block diagonal matrices of the same form
as X and Z, as well as storage for the Schur complement system that is Cholesky
factored in each iteration. For a problem with m constraints and block diagonal
matrices with blocks of size n1, n2, . . ., ns, CSDP requires approximately

Storage = 8(m2 + 11(n2
1 + n2

2 + . . . + n2
s)) (15)

bytes of storage. This formula includes all of the two dimensional arrays but
leaves out the one dimensional vectors. This formula also excludes the storage
required to store the constraint matrices, which are assumed to be sparse. In
practice it is wise to allow for about 10% to 20% more storage to account for
the excluded factors.

The parallel version of CSDP requires additional storage for work matri-
ces used by the routine that computes the Schur complement matrix. If the
OpenMP maximum number of threads (typically the number of processors on
the system) is p, and p > 1, then CSDP will allocate an additional 16(p−1)n2

max
bytes of storage for workspace.

Calling The SDP Routine

The routine has 11 parameters which include the problem data and an initial
solution. The calling sequence for the sdp subroutine is:

int easy_sdp(n,k,C,a,constraints,constant_offset,pX,py,pZ,ppobj,pdobj)

int n; /* Dimension of X */

int k; /* # of constraints */

struct blockmatrix C; /* C matrix */

double *a; /* right hand side vector */
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struct constraintmatrix *constraints; /* Constraints */

double constant_offset; /* added to objective */

struct blockmatrix *pX; /* X matrix */

double **py; /* y vector */

struct blockmatrix *pZ; /* Z matrix */

double *ppobj; /* Primal objective */

double *pdobj; /* Dual objective */

Input Parameters

1. n. This parameter gives the dimension of the X, C, and Z matrices.

2. k. This parameter gives the number of constraints.

3. C. This parameter gives the C matrix and implicitly defines the block
structure of the block diagonal matrices.

4. a. This parameter gives the right hand side vector a.

5. constraints. This parameter specifies the problem constraints.

6. constant offset. This scalar is added to the primal and dual objective
values.

7. pX. On input, this parameter gives the initial primal solution X.

8. py. On input, this parameter gives the initial dual solution y.

9. pZ. On input, this parameter gives the initial dual solution Z.

Output Parameters

1. pX. On output this parameter gives the optimal primal solution X.

2. py. On output, this parameter gives the optimal dual solution y.

3. pZ. On output, this parameter gives the optimal dual solution Z.

4. ppobj. On output, this parameter gives the optimal primal objective
value.

5. pdobj. On output, this parameter gives the optimal dual objective value.

Return Codes

If CSDP succeeds in solving the problem to full accuracy, the easy sdp routine
will return 0. Otherwise, the easy sdp routine will return a nonzero return
code. In many cases, CSDP will have actually found a good solution that
doesn’t quite satisfy one of the termination criteria. In particular, return code
3 is usually indicative of such a solution. Whenever there is a nonzero return
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Code Explanation
0 Problem solved to optimality
1 Problem is primal infeasible.
2 Problem is dual infeasible.
3 Problem solved to near optimality
4 Maximum iterations reached.
5 Stuck at edge of primal feasibility.
6 Stuck at edge of dual feasibility.
7 Lack of progress.
8 X, Z, or O is singular.
9 NaN or Inf values encountered.

10 Program stopped by signal (SIXCPU, SIGTERM, etc.)

Table 1: Return codes for easy sdp() and CSDP.

Code Explanation
200 No problem data file named.
201 Couldn’t open problem data file.
202 Couldn’t open initial solution data file.
203 Couldn’t write problem data file.
204 Couldn’t write solution data file.
205 Storage allocation failed.
206 An internal error occurred.

Table 2: Exit codes for non-recoverable errors.

code, you should examine the return and the solution to see what happened. In
other cases, the code will stop because it can no longer make progress and the
solution doesn’t satisfy the required tolerances. However, the solution may be
good enough for your purposes.

The return codes from the easy sdp() routine are given in Table 1. For the
command line solver, csdp, these are also used as exit codes. Additional exit
codes are used for significant errors that did not allow execution. These are
given Table 2.

The User Exit Routine

By default, the easy sdp routine stops when it has obtained a solution in which
the relative primal and dual infeasibilities and the relative gap between the
primal and dual objective values is less than 1.0 × 10−8. There are situations
in which you might want to terminate the solution process before an optimal
solution has been found. For example, in a cutting plane routine, you might
want to terminate the solution process as soon as a cutting plane has been found.
If you would like to specify your own stopping criteria, you can implement these
in a user exit routine.
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At each iteration of its algorithm, CSDP calls a routine named user exit.
CSDP passes the problem data and current solution to this subroutine. If
user exit returns 0, then CSDP continues. However, if user exit returns 1,
then CSDP returns immediately to the calling program. The default routine
supplied in the CSDP library simply returns 0. If CSDP is compiled with the
“-DUSESIGTERM” flag, then default routine will also stop the solution process
whenever the process receives a TERM signal. You can write your own routine
and link it with your program in place of the default user exit routine.

The calling sequence for the user exit routine is

int user_exit(n,k,C,a,dobj,pobj,constant_offset,constraints,X,y,Z,params)

int n; /* Dimension of X */

int k; /* # of constraints */

struct blockmatrix C; /* C matrix */

double *a; /* right hand side */

double dobj; /* dual objective */

double pobj; /* primal objective */

double constant_offset; /* added to objective */

struct constraintmatrix *constraints; /* Constraints */

struct blockmatrix X; /* primal solution */

double *y; /* dual solution */

struct blockmatrix Z; /* dual solution */

struct paramstruc params; /* parameters sdp called with */

Finding an Initial Solution

The CSDP library contains a routine for finding an initial solution to the SDP
problem. Note that this routine allocates all storage required for the initial
solution. The calling sequence for this routine is:

void initsoln(n,k,C,a,constraints,pX0,py0,pZ0)

int n; /* dimension of X */

int k; /* # of constraints */

struct bqlockmatrix C; /* C matrix */

double *a; /* right hand side vector */

struct constraintmatrix *constraints; /* constraints */

struct blockmatrix *pX0; /* Initial primal solution */

double **py0; /* Initial dual solution */

struct blockmatrix *pZ0; /* Initial dual solution */

Reading and Writing Problem Data

The CSDP library contains routines for reading and writing SDP problems and
solutions in SDPA format. The routine write prob is used to write out an SDP
problem in SDPA sparse format. The routine read prob is used to read an SDP
problem in from a file. The routine write sol is used to write an SDP solution
to a file. The routine read sol is used to read a solution from a file.
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The calling sequence for write prob is

int write_prob(fname,n,k,C,a,constraints)

char *fname; /* file to write */

int n; /* Dimension of X */

int k; /* # of constraints */

struct blockmatrix C; /* The C matrix */

double *a; /* The a vector */

struct constraintmatrix *constraints; /* the constraints */

The calling sequence for read prob is:

int read_prob(fname,pn,pk,pC,pa,pconstraints,printlevel)

char *fname; /* file to read */

int *pn; /* Dimension of X */

int *pk; /* # of constraints */

struct blockmatrix *pC; /* The C matrix */

double **pa; /* The a vector */

struct constraintmatrix **pconstraints; /* The constraints */

int printlevel; /* =0 for no output, =1 for normal

output, >1 for debugging */

Note that the read prob routine allocates all storage required by the problem.
The calling sequence for write sol is

int write_sol(fname,n,k,X,y,Z)

char *fname; /* Name of the file to write to */

int n; /* Dimension of X */

int k; /* # of constraints */

struct blockmatrix X; /* Primal solution X */

double *y; /* Dual vector y */

struct blockmatrix Z; /* Dual matrix Z */

This routine returns 0 if successful and exits if it is unable to write the solution
file.

The calling sequence for read sol is

int read_sol(fname,n,k,C,pX,py,pZ)

char *fname; /* file to read */

int n; /* dimension of X */

int k; /* # of constraints */

struct blockmatrix C; /* The C matrix */

struct blockmatrix *pX; /* The X matrix */

double **py; /* The y vector */

struct blockmatrix *pZ; /* The Z matrix */

Note that read sol allocates storage for X, y, and Z. This routine returns 0
when successful, and exits if it is unable to read the solution file.
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Freeing Problem Memory

The routine free prob can be used to automatically free the memory allocated
for a problem. The calling sequence for free prob is

void free_prob(n,k,C,a,constraints,X,y,Z)

int n; /* Dimension of X */

int k; /* # of constraints */

struct blockmatrix C; /* The C matrix */

double *a; /* The a vector */

struct constraintmatrix *constraints; /* the constraints */

struct blockmatrix X; /* X matrix. */

double *y; /* the y vector. */

struct blockmatrix Z; /* Z matrix. */
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