
Comedi i

Comedi

The Control and Measurement Device Interface handbook
for Comedilib 0.11.0

Comedi ii

Copyright © 1998-2003 David Schleef

Copyright © 2001-2003, 2005, 2008 Frank Mori Hess

Copyright © 2002-2003 Herman Bruyninckx

Copyright © 2012 Bernd Porr

Copyright © 2012 Ian Abbott

Copyright © 2012, 2015 Éric Piel

This document is part of Comedilib. In the context of this document, the term "source code" as defined by the license is interpreted
as the XML source.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation, version 2.1 of the License.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Comedi iii

Contents

1 Overview 1

1.1 What is a “device driver”? . 1

1.2 Policy vs. mechanism . 1

1.3 A general DAQ device driver package . 2

1.4 DAQ signals . 2

1.5 Device hierarchy . 3

1.6 Acquisition terminology . 3

1.7 DAQ functions . 4

1.8 Supporting functionality . 4

2 Configuration 5

2.1 Configuration . 5

2.2 Getting information about a card . 7

3 Writing Comedi programs 8

3.1 Your first Comedi program . 8

3.2 Converting between integer data and physical units . 9

3.3 Your second Comedi program . 10

3.4 Asynchronous acquisition . 11

3.5 Further examples . 16

4 Acquisition and configuration functions 16

4.1 Functions for single acquisition . 16

4.1.1 Single digital acquisition . 16

4.1.2 Single analog acquisition . 17

4.2 Instructions for multiple acquisitions . 18

4.2.1 The instruction data structure . 18

4.2.2 Instruction execution . 19

4.3 Instructions for configuration . 19

4.4 Instruction for internal triggering . 20

4.5 Commands for streaming acquisition . 21

4.5.1 Executing a command . 21

4.5.2 The command data structure . 21

4.5.3 The command trigger events . 22

4.5.4 The command flags . 24

4.5.5 Anti-aliasing . 24

4.6 Slowly-varying inputs . 24

4.7 Experimental functionality . 25

Comedi iv

4.7.1 Digital input combining machines . 25

4.7.2 Analog filtering configuration . 26

4.7.3 Analog Output Waveform Generation . 26

4.7.4 Extended Triggering . 27

4.7.5 Analog Triggering . 27

4.7.6 Bitfield Pattern Matching Extended Trigger . 28

4.7.7 Counter configuration . 28

4.7.8 One source plus auxiliary counter configuration . 29

4.7.9 National Instruments General Purpose Counters/Timers (GPCT) . 29

4.7.10 National Instruments RTSI trigger bus . 30

5 Comedi reference 34

5.1 Headerfiles: comedi.h and comedilib.h . 34

5.2 Constants and macros . 34

5.2.1 CR_PACK . 34

5.2.2 CR_PACK_FLAGS . 35

5.2.3 RANGE_LENGTH (deprecated) . 35

5.2.4 enum comedi_conversion_direction . 35

5.2.5 enum comedi_io_direction . 35

5.2.6 enum comedi_subdevice_type . 36

5.3 Data types and structures . 36

5.3.1 comedi_devinfo . 36

5.3.2 comedi_t . 37

5.3.3 sampl_t . 37

5.3.4 lsampl_t . 37

5.3.5 comedi_trig (deprecated) . 37

5.3.6 comedi_sv_t (deprecated) . 37

5.3.7 comedi_cmd . 38

5.3.8 comedi_insn . 38

5.3.9 comedi_range . 39

5.3.10 comedi_krange . 39

5.3.11 comedi_insnlist . 40

5.3.12 comedi_polynomial_t . 40

5.4 Functions . 40

5.4.1 Core Functions . 40

5.4.1.1 comedi_close . 40

5.4.1.2 comedi_data_read . 40

5.4.1.3 comedi_data_read_n . 41

5.4.1.4 comedi_data_read_delayed . 41

Comedi v

5.4.1.5 comedi_data_read_hint . 42

5.4.1.6 comedi_data_write . 42

5.4.1.7 comedi_do_insn . 43

5.4.1.8 comedi_do_insnlist . 43

5.4.1.9 comedi_fileno . 43

5.4.1.10 comedi_find_range . 44

5.4.1.11 comedi_find_subdevice_by_type . 44

5.4.1.12 comedi_from_phys . 45

5.4.1.13 comedi_from_physical . 45

5.4.1.14 comedi_get_board_name . 45

5.4.1.15 comedi_get_driver_name . 46

5.4.1.16 comedi_get_maxdata . 46

5.4.1.17 comedi_get_n_channels . 46

5.4.1.18 comedi_get_n_ranges . 47

5.4.1.19 comedi_get_n_subdevices . 47

5.4.1.20 comedi_get_range . 47

5.4.1.21 comedi_get_subdevice_flags . 48

5.4.1.22 comedi_get_subdevice_type . 49

5.4.1.23 comedi_get_version_code . 49

5.4.1.24 comedi_internal_trigger . 50

5.4.1.25 comedi_lock . 50

5.4.1.26 comedi_maxdata_is_chan_specific . 51

5.4.1.27 comedi_open . 51

5.4.1.28 comedi_range_is_chan_specific . 51

5.4.1.29 comedi_set_global_oor_behavior . 52

5.4.1.30 comedi_to_phys . 52

5.4.1.31 comedi_to_physical . 52

5.4.1.32 comedi_unlock . 53

5.4.2 Asynchronous commands . 53

5.4.2.1 comedi_cancel . 53

5.4.2.2 comedi_command . 53

5.4.2.3 comedi_command_test . 54

5.4.2.4 comedi_get_buffer_contents . 55

5.4.2.5 comedi_get_buffer_read_offset . 55

5.4.2.6 comedi_get_buffer_write_offset . 55

5.4.2.7 comedi_get_buffer_read_count . 56

5.4.2.8 comedi_get_buffer_write_count . 56

5.4.2.9 comedi_get_buffer_size . 56

5.4.2.10 comedi_get_cmd_generic_timed . 57

Comedi vi

5.4.2.11 comedi_get_cmd_src_mask . 57

5.4.2.12 comedi_get_max_buffer_size . 58

5.4.2.13 comedi_get_read_subdevice . 58

5.4.2.14 comedi_get_write_subdevice . 58

5.4.2.15 comedi_mark_buffer_read . 59

5.4.2.16 comedi_mark_buffer_written . 59

5.4.2.17 comedi_poll . 60

5.4.2.18 comedi_set_buffer_size . 60

5.4.2.19 comedi_set_max_buffer_size . 60

5.4.2.20 comedi_set_read_subdevice . 61

5.4.2.21 comedi_set_write_subdevice . 61

5.4.3 Calibration . 62

5.4.3.1 comedi_apply_calibration . 62

5.4.3.2 comedi_apply_parsed_calibration . 63

5.4.3.3 comedi_cleanup_calibration . 63

5.4.3.4 comedi_get_default_calibration_path . 63

5.4.3.5 comedi_get_hardcal_converter . 64

5.4.3.6 comedi_get_softcal_converter . 65

5.4.3.7 comedi_parse_calibration_file . 65

5.4.4 Digital I/O . 66

5.4.4.1 comedi_dio_bitfield2 . 66

5.4.4.2 comedi_dio_config . 66

5.4.4.3 comedi_dio_get_config . 67

5.4.4.4 comedi_dio_read . 67

5.4.4.5 comedi_dio_write . 68

5.4.5 Error reporting . 68

5.4.5.1 comedi_errno . 68

5.4.5.2 comedi_loglevel . 69

5.4.5.3 comedi_perror . 69

5.4.5.4 comedi_strerror . 70

5.4.6 Extensions . 70

5.4.6.1 comedi_arm . 70

5.4.6.2 comedi_arm_channel . 70

5.4.6.3 comedi_digital_trigger_disable . 71

5.4.6.4 comedi_digital_trigger_enable_edges . 71

5.4.6.5 comedi_digital_trigger_enable_levels . 72

5.4.6.6 comedi_disarm . 73

5.4.6.7 comedi_disarm_channel . 73

5.4.6.8 comedi_get_clock_source . 74

Comedi vii

5.4.6.9 comedi_get_gate_source . 74

5.4.6.10 comedi_get_hardware_buffer_size . 75

5.4.6.11 comedi_get_routing . 75

5.4.6.12 comedi_reset . 76

5.4.6.13 comedi_reset_channel . 76

5.4.6.14 comedi_set_clock_source . 77

5.4.6.15 comedi_set_counter_mode . 77

5.4.6.16 comedi_set_filter . 78

5.4.6.17 comedi_set_gate_source . 78

5.4.6.18 comedi_set_other_source . 79

5.4.6.19 comedi_set_routing . 79

5.4.7 Deprecated functions . 80

5.4.7.1 comedi_dio_bitfield . 80

5.4.7.2 comedi_get_buffer_offset . 80

5.4.7.3 comedi_get_timer . 81

5.4.7.4 comedi_sv_init . 81

5.4.7.5 comedi_sv_measure . 81

5.4.7.6 comedi_sv_update . 82

5.4.7.7 comedi_timed_1chan . 82

5.4.7.8 comedi_trigger . 83

5.5 Language bindings . 83

5.5.1 Python bindings . 83

5.6 Kernel drivers . 84

5.6.1 8255 -- generic 8255 support . 84

5.6.2 acl7225b -- ADLINK NuDAQ ACL-7225b & compatibles . 85

5.6.3 adl_pci6208 -- ADLINK PCI-6216V . 85

5.6.4 adl_pci7230 -- Driver for the ADLINK PCI-7230 32 ch. isolated digital io board 86

5.6.5 adl_pci7250 -- Driver for the ADLINK PCI-7250 relay output & digital input card 86

5.6.6 adl_pci7296 -- Driver for the ADLINK PCI-7296 96 ch. digital io board 87

5.6.7 adl_pci7432 -- Driver for the ADLINK PCI-7432 64 ch. isolated digital io board 87

5.6.8 adl_pci8164 -- Driver for the ADLINK PCI-8164 4 Axes Motion Control board 87

5.6.9 adl_pci9111 -- ADLINK PCI-9111HR . 88

5.6.10 adl_pci9112 -- ADLINK PCI-9112 . 88

5.6.11 adl_pci9118 -- ADLINK PCI-9118DG, PCI-9118HG, PCI-9118HR 89

5.6.12 adq12b -- driver for MicroAxial ADQ12-B data acquisition and control card 90

5.6.13 adv_pci1710 -- Advantech PCI-1710, PCI-1710HG, PCI-1711, PCI-1713, Advantech PCI-1720, PCI-
1731 . 91

5.6.14 adv_pci1723 -- Advantech PCI-1723 . 92

Comedi viii

5.6.15 adv_pci_dio -- Advantech PCI-1730, PCI-1733, PCI-1734, PCI-1735U, PCI-1736UP, PCI-1750, PCI-
1751, PCI-1752, PCI-1753/E, PCI-1754, PCI-1756, PCI-1762 . 92

5.6.16 aio_aio12_8 -- Acces I/O Products PC-104 AIO12-8 Analog I/O Board 93

5.6.17 aio_iiro_16 -- Acces I/O Products PC-104 IIRO16 Relay And Isolated Input Board 93

5.6.18 amplc_dio200 -- Amplicon 200 Series Digital I/O . 94

5.6.19 amplc_pc236 -- Amplicon PC36AT, PCI236 . 97

5.6.20 amplc_pc263 -- Amplicon PC263, PCI263 . 98

5.6.21 amplc_pci224 -- Amplicon PCI224, PCI234 . 98

5.6.22 amplc_pci230 -- Amplicon PCI230, PCI260 Multifunction I/O boards 100

5.6.23 c6xdigio -- Mechatronic Systems Inc. C6x_DIGIO DSP daughter card 103

5.6.24 cb_das16_cs -- Computer Boards PC-CARD DAS16/16 . 103

5.6.25 cb_pcidac -- Measurement Computing PCI Migration series boards . 103

5.6.26 cb_pcidas -- MeasurementComputing PCI-DAS series with the AMCC S5933 PCI controller 104

5.6.27 cb_pcidas64 -- MeasurementComputing PCI-DAS64xx, 60XX, and 4020 series with the PLX 9080 PCI
controller . 104

5.6.28 cb_pcidda -- MeasurementComputing PCI-DDA series . 105

5.6.29 cb_pcidio -- ComputerBoards’ DIO boards with PCI interface . 106

5.6.30 cb_pcimdas -- Measurement Computing PCI Migration series boards 106

5.6.31 cb_pcimdda -- Measurement Computing PCIM-DDA06-16 . 107

5.6.32 comedi_bond -- A driver to ’bond’ (merge) multiple subdevices from multiple devices together as one. . 108

5.6.33 comedi_parport -- Standard PC parallel port . 108

5.6.34 comedi_rt_timer -- Command emulator using real-time tasks . 109

5.6.35 comedi_test -- generates fake waveforms . 110

5.6.36 contec_fit -- Contec F&eIT series modules . 110

5.6.37 contec_pci_dio -- Contec PIO1616L digital I/O board . 111

5.6.38 daqboard2000 -- IOTech DAQBoard/2000 . 111

5.6.39 das08 -- DAS-08 compatible boards . 111

5.6.40 das08_cs -- DAS-08 PCMCIA boards . 112

5.6.41 das16 -- DAS16 compatible boards . 113

5.6.42 das16m1 -- CIO-DAS16/M1 . 113

5.6.43 das1800 -- Keithley Metrabyte DAS1800 (& compatibles) . 114

5.6.44 das6402 -- Keithley Metrabyte DAS6402 (& compatibles) . 115

5.6.45 das800 -- Keithley Metrabyte DAS800 (& compatibles) . 115

5.6.46 dmm32at -- Diamond Systems mm32at driver. 115

5.6.47 dt2801 -- Data Translation DT2801 series and DT01-EZ . 116

5.6.48 dt2811 -- Data Translation DT2811 . 116

5.6.49 dt2814 -- Data Translation DT2814 . 117

5.6.50 dt2815 -- Data Translation DT2815 . 117

5.6.51 dt2817 -- Data Translation DT2817 . 118

Comedi ix

5.6.52 dt282x -- Data Translation DT2821 series (including DT-EZ) . 119

5.6.53 dt3000 -- Data Translation DT3000 series . 119

5.6.54 dt9812 -- Data Translation DT9812 USB module . 120

5.6.55 fl512 -- unknown . 120

5.6.56 gsc_hpdi -- General Standards Corporation High Speed Parallel Digital Interface rs485 boards 121

5.6.57 icp_multi -- Inova ICP_MULTI . 121

5.6.58 ii_pci20kc -- Intelligent Instruments PCI-20001C carrier board . 122

5.6.59 jr3_pci -- JR3/PCI force sensor board . 122

5.6.60 ke_counter -- Driver for Kolter Electronic Counter Card . 123

5.6.61 me4000 -- Meilhaus ME-4000 series boards . 123

5.6.62 me_daq -- Meilhaus PCI data acquisition cards . 124

5.6.63 mpc624 -- Micro/sys MPC-624 PC/104 board . 124

5.6.64 mpc8260cpm -- MPC8260 CPM module generic digital I/O lines . 125

5.6.65 multiq3 -- Quanser Consulting MultiQ-3 . 125

5.6.66 ni_6527 -- National Instruments 6527 . 125

5.6.67 ni_65xx -- National Instruments 65xx static dio boards . 126

5.6.68 ni_660x -- National Instruments 660x counter/timer boards . 126

5.6.69 ni_670x -- National Instruments 670x . 127

5.6.70 ni_at_a2150 -- National Instruments AT-A2150 . 127

5.6.71 ni_at_ao -- National Instruments AT-AO-6/10 . 128

5.6.72 ni_atmio -- National Instruments AT-MIO-E series . 128

5.6.73 ni_atmio16d -- National Instruments AT-MIO-16D . 129

5.6.74 ni_daq_700 -- National Instruments PCMCIA DAQCard-700 DIO only 129

5.6.75 ni_daq_dio24 -- National Instruments PCMCIA DAQ-Card DIO-24 130

5.6.76 ni_labpc -- National Instruments Lab-PC (& compatibles) . 130

5.6.77 ni_labpc_cs -- National Instruments Lab-PC (& compatibles) . 131

5.6.78 ni_mio_cs -- National Instruments DAQCard E series . 131

5.6.79 ni_pcidio -- National Instruments PCI-DIO32HS, PCI-DIO96, PCI-6533, PCI-6503 132

5.6.80 ni_pcimio -- National Instruments PCI-MIO-E series and M series (all boards) 133

5.6.81 ni_tio -- National Instruments general purpose counters . 135

5.6.82 ni_tiocmd -- National Instruments general purpose counters command support 135

5.6.83 pcl711 -- Advantech PCL-711 and 711b, ADLINK ACL-8112 . 135

5.6.84 pcl724 -- Advantech PCL-724, PCL-722, PCL-731 ADLINK ACL-7122, ACL-7124, PET-48DIO . . . 136

5.6.85 pcl725 -- Advantech PCL-725 (& compatibles) . 136

5.6.86 pcl726 -- Advantech PCL-726 & compatibles . 136

5.6.87 pcl730 -- Advantech PCL-730 (& compatibles) . 137

5.6.88 pcl812 -- Advantech PCL-812/PG, PCL-813/B, ADLINK ACL-8112DG/HG/PG, ACL-8113, ACL-
8216, ICP DAS A-821PGH/PGL/PGL-NDA, A-822PGH/PGL, A-823PGH/PGL, A-826PG, ICP DAS
ISO-813 . 138

Comedi x

5.6.89 pcl816 -- Advantech PCL-816 cards, PCL-814 . 139

5.6.90 pcl818 -- Advantech PCL-818 cards, PCL-718 . 140

5.6.91 pcm3724 -- Advantech PCM-3724 . 141

5.6.92 pcm3730 -- PCM3730 . 142

5.6.93 pcmad -- Winsystems PCM-A/D12, PCM-A/D16 . 142

5.6.94 pcmda12 -- A driver for the Winsystems PCM-D/A-12 . 143

5.6.95 pcmmio -- A driver for the PCM-MIO multifunction board . 143

5.6.96 pcmuio -- A driver for the PCM-UIO48A and PCM-UIO96A boards from Winsystems. 144

5.6.97 poc -- Generic driver for very simple devices . 145

5.6.98 quatech_daqp_cs -- Quatech DAQP PCMCIA data capture cards . 146

5.6.99 rtd520 -- Real Time Devices PCI4520/DM7520 . 146

5.6.100 rti800 -- Analog Devices RTI-800/815 . 147

5.6.101 rti802 -- Analog Devices RTI-802 . 147

5.6.102 s526 -- Sensoray 526 driver . 148

5.6.103 s626 -- Sensoray 626 driver . 148

5.6.104 serial2002 -- Driver for serial connected hardware . 149

5.6.105 skel -- Skeleton driver, an example for driver writers . 149

5.6.106 ssv_dnp -- SSV Embedded Systems DIL/Net-PC . 149

5.6.107 unioxx5 -- Driver for Fastwel UNIOxx-5 (analog and digital i/o) boards. 150

5.6.108 usbdux -- Driver for USB-DUX-D of INCITE Technology Limited . 150

5.6.109 usbduxfast -- Driver for USB-DUX-FAST of INCITE Technology Limited 151

5.6.110 usbduxsigma -- Driver for USB-DUX-SIGMA of INCITE Technology Limited 152

6 Writing a Comedi driver 153

6.1 Communication user-space — kernel-space . 153

6.2 Generic functionality . 154

6.2.1 Data structures . 154

6.2.1.1 comedi_lrange . 155

6.2.1.2 comedi_subdevice . 155

6.2.1.3 comedi_device . 156

6.2.1.4 comedi_async . 156

6.2.1.5 comedi_driver . 157

6.2.2 Generic driver support functions . 157

6.3 Board-specific functionality . 158

6.4 Callbacks, events and interrupts . 159

6.5 Device driver caveats . 159

6.6 Integrating the driver in the Comedi library . 160

7 Glossary 160

Comedi xi

List of Figures

1 Asynchronous Acquisition Sequence . 4

Abstract

Comedi is a free software project to interface digital acquisition (DAQ) cards. It is the combination of three complementary
software items: (i) a generic, device-independent API, (ii) a collection of Linux kernel modules that implement this API for a
wide range of cards, and (iii) a Linux user space library with a developer-oriented programming interface to configure and use
the cards.

http://www.comedi.org

Comedi 1 / 161

1 Overview

Comedi is a free software project that develops drivers, tools, and libraries for various forms of data acquisition: reading and
writing of analog signals; reading and writing of digital inputs/outputs; pulse and frequency counting; pulse generation; reading
encoders; etc. The source code is distributed in two main packages, comedi and comedilib:

• Comedi is a collection of drivers for a variety of common data acquisition plug-in boards (which are called “devices” in
Comedi terminology). The drivers are implemented as the combination of (i) one single core Linux kernel module (called
“comedi”) providing common functionality, and (ii) individual low-level driver modules for each device.

• Comedilib is a separately distributed package containing a user-space library that provides a developer-friendly interface
to the Comedi devices. Included in the Comedilib package are documentation, configuration and calibration utilities, and
demonstration programs.

• Kcomedilib is a Linux kernel module (distributed with the comedi package) that provides the same interface as comedilib
in kernel space, and suitable for use by real-time kernel modules. It is effectively a “kernel library” for using Comedi from
real-time tasks.

Comedi works with standard Linux kernels, but also with its real-time extensions RTAI and RTLinux/GPL.

This section gives a high-level introduction to which functionality you can expect from the software. More technical details and
programming examples are given in the following sections of this document.

1.1 What is a “device driver”?

A device driver is a piece of software that interfaces a particular piece of hardware: a printer, a sound card, a motor drive, etc.
It translates the primitive, device-dependent commands with which the hardware manufacturer allows you to configure, read and
write the electronics of the hardware interface into more abstract and generic function calls and data structures for the application
programmer.

David Schleef started the Comedi project to put a generic interface on top of lots of different cards for measurement and control
purposes. This type of cards are often called data acquisition (or DAQ) cards.

Analog input and output cards were the first goal of the project, but now Comedi also provides a device independent interface to
digital input and output cards, and counter and timer cards (including encoders, pulse generators, frequency and pulse timers,
etc.).

Schleef designed a structure which is a balance between modularity and complexity: it’s fairly easy to integrate a new card
because most of the infrastructure part of other, similar drivers can be reused, and learning the generic and hence somewhat
“heavier” Comedi API doesn’t scare away new contributors from integrating their drivers into the Comedi framework.

1.2 Policy vs. mechanism

Device drivers are often written by application programmers, that have only their particular application in mind; especially in
real-time applications. For example, one writes a driver for the parallel port, because one wants to use it to generate pulses that
drive a stepper motor. This approach often leads to device drivers that depend too much on that particular application, and are
not general enough to be re-used for other applications. One golden rule for the device driver writer is to separate mechanism
and policy:

• Mechanism. The mechanism part of the device interface is a faithful representation of the bare functionality of the device,
independent of what part of the functionality an application will use.

• Policy. Once a device driver offers a software interface to the mechanism of the device, an application writer can use this
mechanism interface to use the device in one particular fashion. That is, some of the data stuctures offered by the mechanism
are interpreted in specific physical units, or some of them are taken together because this composition is relevant for the
application. For example, a analog output card can be used to generate voltages that are the inputs for the electronic drivers of
the motors of a robot; these voltages can be interpreted as setpoints for the desired velocity of these motors, and six of them
are taken together to steer one particular robot with six-degrees of freedom. Some of the other outputs of the same physical
device can be used by another application program, for example to generate a sine wave that drives a vibration shaker.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.rtai.org
http://www.rtlinux-gpl.org/
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 2 / 161

So, Comedi focuses only on the mechanism part of DAQ interfacing. The project does not provide the policy parts, such as
Graphical User Interfaces to program and display acquisitions, signal processing libraries, or control algorithms.

1.3 A general DAQ device driver package

From the point of view of application developers, there are many reasons to welcome the standardization of the API and the
architectural structure of DAQ software:

• API: devices that offer similar functionalities, should have the same software interface, and their differences should be coped
with by parameterizing the interfaces, not by changing the interface for each new device in the family. However, the DAQ
manufacturers have never been able (or willing) to come up with such a standardization effort themselves.

• Architectural structure: many electronic interfaces have more than one layer of functionality between the hardware and
the operating system, and the device driver code should reflect this fact. For example, many different interface cards use the
same PCI driver chips, or use the parallel port as an intermediate means to connect to the hardware device. Hence, “lower-
level” device drivers for these PCI chips and parallel ports allow for an increased modularity and re-useability of the software.
Finding the generic similarities and structure among different cards helps in developing device drivers faster and with better
documentation.

In the case of Linux as the host operating system, device driver writers must keep the following issues in mind:

• Kernel space vs. User space. The Linux operating system has two levels that require different programming approaches. Only
privileged processes can run in the kernel, where they have access to all hardware and to all kernel data structures. Normal
application programs can run their processes only in user space, where these processes are shielded from each other, and from
direct access to hardware and to critical data of the operating system; these user space programs execute much of the operating
system’s functionality through system calls.

Device drivers typically must access specific addresses on the bus, and hence must (at least partially) run in kernel space. Nor-
mal users program against the API of the Comedilib user-space library. Comedilib then handles the necessary communication
with the Comedi modules running in kernel-space.

• Device files or device file system. Users who write an application for a particular device, must link their application to that
device’s device driver. Part of this device driver, however, runs in kernel space, and the user application in user space. So, the
operating system provides an interface between both. In Linux or Unix, these interfaces are in the form of “files” in the /dev
directory. Each device supported in the kernel may be representated as such a user space device file, and its functionality can
may be accessed by classical Unix file I/O: open(), close(), read(), write(), ioctl(), and mmap().

• /proc interface. Linux (and some other UNIX operating systems) offer a file-like interface to attached devices (and other
OS-related information) via the /proc directories. These “files” do not really exist, but it gives a familiar interface to users,
with which they can inspect the current status of each device.

• Direct Memory Access (DMA) vs. Programmed Input/Output (PIO). Almost all devices can be interfaced in PIO mode:
the processor is responsible for directly accessing the bus addresses allocated to the device whenever it needs to read or write
data. Some devices also allow DMA: the device and the memory “talk” to each other directly, without needing the processor.
DMA is a feature of the bus, not of the operating system (which, of course, has to support its processes to use the feature).

• Real-time vs. non real-time. If the device is to be used in a RTLinux/GPL or RTAI application, there are a few extra
requirements, because not all system calls are available in the kernel of the real-time operating systems RTLinux/GPL or
RTAI. The APIs of RTAI and RTLinux/Free differ in different ways, so the Comedi developers have spent a lot of efforts to
make generic wrappers to the required RTOS primitives: timers, memory allocation, registration of interrupt handlers, etc.

1.4 DAQ signals

The cards supported in Comedi have one or more of the following signals: analog input, analog output, digital input, digital
output, counters input, counter output, pulse input, pulse output:

• Digital signals are conceptually quite simple, and don’t need much configuration: the number of channels, their addresses on
the bus, and their input or output direction.

http://www.comedi.org
http://www.rtlinux-gpl.org/
http://www.rtai.org
http://www.rtlinux-gpl.org/
http://www.rtai.org
http://www.comedi.org
http://www.comedi.org

Comedi 3 / 161

• Analog signals are a bit more complicated. Typically, an analog acquisition channel can be programmed to generate or read a
voltage between a lower and an upper threshold (e.g., -10V and +10V). The card’s electronics may also allow automatically
sampling of a set of channels in a prescribed order.

• Pulse-based signals (counters, timers, encoders, etc.) are conceptually only a bit more complex than digital inputs and outputs,
in that they only add some timing specifications to the signal. Comedi has still only a limited number of drivers for this kind of
signals, although most of the necessary API and support functionality is available.

In addition to these “real” DAQ functions, Comedi also offers basic timer access.

1.5 Device hierarchy

Comedi organizes all hardware according to the following hierarchy:

• Channel: the lowest-level hardware component, that represents the properties of one single data channel; for example, an
analog input, or a digital output.

• Subdevice: a set of functionally identical channels. For example, a set of 16 identical analog inputs.

• Device: a set of subdevices that are physically implemented on the same interface card; in other words, the interface card
itself. For example, the National Instruments 6024E device has a subdevice with 16 analog input channels, another
subdevice with two analog output channels, and a third subdevice with eight digital inputs/outputs.

Some interface cards have extra components that don’t fit in the above-mentioned classification, such as an EEPROM to store
configuration and board parameters, or calibration inputs. These special components are also classified as “sub-devices” in
Comedi.

1.6 Acquisition terminology

This Section introduces the terminology that this document uses when talking about Comedi “commands”, which are streaming
asyncronous acquisitions. Figure 1 depicts a typical acquisition sequence when running a command:

• The sequence has a start and an end. At both sides, the software and the hardware need some finite initialization or settling
time.

• The sequence consists of a number of identically repeated scans. This is where the actual data acquisitions are taking place:
data is read from the card, or written to it. Each scan also has a begin, an end, and a finite setup time. Possibly, there is also a
settling time (“scan delay”) at the end of a scan.

So, the hardware puts a lower boundary (the scan interval) on the minimum time needed to complete a full scan.

• Each scan contains one or more conversions on particular channels, i.e., the AD/DA converter is activated on each of the
programmed channels, and produces a sample, again in a finite conversion time, starting from the moment in time called the
sample time in Figure 1 (sometimes also called the “timestamp”), and caused by a triggering event, called convert.
In addition, some hardware has limits on the minimum conversion interval it can achieve, i.e., the minimum time it needs be-
tween subsequent conversions. For example, some A/D hardware must multiplex the conversions from different input channels
onto one single A/D converter. Thus the conversions are done serially in time (as shown in Figure 1). Other cards have the
hardware to do two or more acquisitions in parallel, and can perform all the conversions in a scan simultaneously. The begin
of each conversion is “triggered” by some internally or externally generated pulse, e.g., a timer.

In general, not only the start of a conversion is triggered, but also the start of a scan and of a sequence. Comedi provides the API
to configure what triggering source one wants to use in each case. The API also allows you to specify the channel list, i.e., the
sequence of channels that needs to be acquired during each scan.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 4 / 161

Figure courtesy of Kurt Müller.

Figure 1: Asynchronous Acquisition Sequence

1.7 DAQ functions

The basic data acquisition functionalities that Comedi offers work on channels, or sets of channels:

• Single acquisition: Comedi has function calls to synchronously perform one single data acquisition on a specified channel:
comedi_data_read(), comedi_data_read_delayed(), comedi_data_write(), comedi_dio_read(), come
di_dio_write(). In addition, the lower-level comedi_do_insn() function can be used to perform an acquisition.

“Synchronous” means that the calling process blocks until the data acquisition has finished.

• Mutiple synchronous acquisition: The comedi_data_read_n() function performs (possibly multiple) data acquisitions
on a specified channel, in a synchronous way. So, the function call blocks until the whole acquisition has finished. The precise
timing between the acquisitions is not hardware controlled.

In addition, comedi_do_insnlist()() executes a list of instructions in one single (blocking, synchronous) call, such that
the overhead involved in configuring each individual acquisition is reduced.

• Command: a command is sequence of scans, for which conditions have been specified that determine when the acquisition
will start and stop, and when each conversion in each scan should occur. A comedi_command() function call sets up the
aynchronous data acquisition: as soon as the command information has been filled in, the comedi_command() function call
returns. The hardware of the card takes care of the sequencing and timing of the data acquisition as it proceeds.

1.8 Supporting functionality

The command functionality cannot be offered by DAQ cards that lack the hardware to autonomously sequence a series of scans.
For these cards, the command functionality may be provided in software. And because of the quite strict real-time requirements
for a command acquisition, a real-time operating system should be used to translate the command specification into a correctly
timed sequence of instructions. Comedi provides the comedi_rt_timer() kernel module to support such a virtual command
execution under RTAI or RTLinux/Free.

Comedi not only offers the API to access the functionality of the cards, but also to query the capabilities of the installed devices.
That is, a user process can find out what channels are available, and what their physical parameters are (range, direction of
input/output, etc.).

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 5 / 161

Buffering is another important aspect of device drivers: the acquired data has to be stored in such buffers, because, in general,
the application program cannot guarantee to always be ready to provide or accept data as soon as the interface board wants to do
a read or write operation. Comedi provides internal buffers for data being streamed to/from devices via Comedi commands. The
buffer sizes are user-adjustable.

2 Configuration

This section assumes that you have successfully compiled and installed the Comedi software, that your hardware device is in
your computer, and that you know the relevant details about it, i.e., what kind of card it is, any jumper settings related to input
ranges, the I/O base address and IRQ for old non-plug-n-play boards, etc.

2.1 Configuration

The good news is: on most systems PCI and USB based boards are configured automatically. The kernel will detect your data
acquisition devices, will load the appropriate kernel drivers and will create the /dev/comedi entries.

bp1@bp1-x61:~/sandbox/comedilib$ ls -l /dev/comedi0*
crw-rw---- 1 root iocard 98, 0 2012-04-26 23:41 /dev/comedi0
crw-rw---- 1 root iocard 98, 48 2012-04-26 23:41 /dev/comedi0_subd0
crw-rw---- 1 root iocard 98, 49 2012-04-26 23:41 /dev/comedi0_subd1

Usually these devices belong to the group iocard as shown here. The only action you need to take is to become member of
this group and then the Comedi device is ready to be used.

There are a few PCI drivers that for one reason or another do not support auto-configuration, either because there is more
than one variant of a board sharing the same PCI device ID (e.g. Advantech PCI-1710 and PCI-1710HG), or because some
configuration options are needed (e.g. Amplicon PCI224 and PCI234) or for some other reason. It is also possible to disable
auto-configuration when loading the comedi kernel module. In these cases devices need to be configured manually as for ISA
cards. Conversely, most Comedi drivers supplied with the kernel sources that support auto-configuration may no longer support
manual configuration.

By default, the comedi kernel module does not reserve any devices for manual configuration so manual configuration will fail.
To allow devices to be configured manually, set the comedi_num_legacy_minors module parameter to the number of devices
to reserve for manual configuration when loading the comedi kernel module. If using modprobe, this can be set automatically
by editing /etc/modprobe.conf or /etc/modprobe.d/comedi.conf (depending on the system) to include the line:

options comedi comedi_num_legacy_minors=4

The number 4 in the above line may be adjusted to increase or decrease the number of devices to be reserved for manual
configuration.

Old ISA based cards need to be manually configured which is explained here. You only need to read on here if you have one of
these old cards. On embedded systems it might also be necessary to load the driver and then to configure the boards manually.
In general manual configuration is done by running the comedi_config command (as root). Here is an example of how to use
the command (perhaps you should read its man page now):

comedi_config /dev/comedi0 labpc-1200 0x260,3

This command says that the “file” /dev/comedi0 can be used to access the Comedi device that uses the labpc-1200 board,
and that you give it two run-time parameters (0x260 and 3). More parameters are possible, and their meaning is driver depen-
dant.

This tutorial goes through the process of configuring Comedi for two devices, a National Instruments AT-MIO-16E-10, and a
Data Translation DT2821-F-8DI.

The NI board is plug-and-play. The current ni_atmio driver has kernel-level ISAPNP support, which is used by default if you
do not specify a base address. So you could simply run comedi_config as

comedi_config /dev/comedi0 ni_atmio

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 6 / 161

For the preceding comedi_config command to succeed, the ni_atmio kernel module must be loaded first. For plug-n-play
boards on modern kernels, the appropriate comedi kernel modules should get loaded automatically when your computer is
booted. The modprobe command can be used to manually load/unload kernel modules, and lsmod will list all the currently
loaded modules.

For the Data Translation board, you need to know how the board’s jumpers are configured in order to specify the correct
comedi_config parameters. These parameters for the board are given in the kernel drivers section about the dt282x driver.
The card discussed here is a DT2821-f-8di. The entry for the dt282x driver tells you that the comedi_config parameters give
the driver the I/O base, IRQ, DMA 1, DMA 2, and in addition the states of the differential/single-ended and unipolar/bipolar
jumpers:

DT282X CONFIGURATION OPTIONS:

• [0] - I/O port base address

• [1] - IRQ

• [2] - DMA 1

• [3] - DMA 2

• [4] - AI jumpered for 0=single ended, 1=differential

• [5] - AI jumpered for 0=straight binary, 1=2’s complement

• [6] - AO 0 jumpered for 0=straight binary, 1=2’s complement

• [7] - AO 1 jumpered for 0=straight binary, 1=2’s complement

• [8] - AI jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5]

• [9] - AO 0 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5], 4=[-2.5,2.5]

• [10]- A0 1 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5], 4=[-2.5,2.5]

So, the appropriate options list might be:

0x200,4,0,0,1,1,1,1,0,2,2

and the full configuration command is:

comedi_config /dev/comedi1 dt2821-f-8di 0x200,4,0,0,1,1,1,1,0,2,2

Setting the DMA channels to 0 disables the use of DMA.

So now you have your boards configured correctly. Since data acquisition boards are not typically well-engineered, Comedi
sometimes can’t figure out if an old non-plug-n-play board is actually in the computer and at the base address you specified. If it
can’t, it assumes you are right. Both of these boards are well-made, so Comedi will give an error message if it can’t find them.
The Comedi kernel module, since it is a part of the kernel, prints messages to the kernel logs, which you can access through the
command dmesg or the file /var/log/messages. Here is a configuration failure (from dmesg):

comedi0: ni_atmio: 0x0200 can’t find board

When it does work, you get:

comedi0: ni_atmio: 0x0260 at-mio-16e-10 (irq = 3)

Note that it also correctly identified the board.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 7 / 161

2.2 Getting information about a card

So now that you have Comedi talking to the hardware, try to talk to Comedi. Call the command comedi_board_info, which
provides information about each subdevice on the board. Here’s part of the output for the USB-DUX sigma board (which is on
/dev/comedi0), as a result of the command comedi_board_info -v.

overall info:
version code: 0x00074c
driver name: usbduxsigma
board name: usbduxsigma
number of subdevices: 4

subdevice 0:
type: 1 (analog input)
flags: 0x10119000

SDF_CMD_READ:can do asynchronous input commands
SDF_READABLE:subdevice can be read
SDF_GROUND:can do aref=ground
SDF_LSAMPL:subdevice uses 32-bit samples for commands

number of channels: 16
max data value: 16777215
ranges:
all chans: [-1.325 V,1.325 V]

command:
start: now|int
scan_begin: timer
convert: now
scan_end: count
stop: none|count

command structure filled with probe_cmd_generic_timed for 16 channels:
start: now 0
scan_begin: timer 1000000

scan_begin_src = TRIG_TIMER:
The sampling rate is defined per scan
meaning all channels are sampled at
the same time. The maximum sampling rate is f=1000 Hz

convert: now 0
scan_end: count 16
stop: count 2

subdevice 1:
type: 2 (analog output)
flags: 0x00125000

SDF_CMD_WRITE:can do asynchronous output commands
SDF_WRITABLE:subdevice can be written
SDF_GROUND:can do aref=ground

number of channels: 4
max data value: 255
ranges:
all chans: [0 V,2.5 V]

command:
start: now|int
scan_begin: timer
convert: now
scan_end: count
stop: none|count

command structure filled with probe_cmd_generic_timed for 4 channels:
start: now 0
scan_begin: timer 1000000

scan_begin_src = TRIG_TIMER:
The sampling rate is defined per scan
meaning all channels are sampled at
the same time. The maximum sampling rate is f=1000 Hz

convert: now 0

http://www.comedi.org
http://www.comedi.org

Comedi 8 / 161

scan_end: count 4
stop: count 2

subdevice 2:
type: 5 (digital I/O)
flags: 0x00030000

SDF_READABLE:subdevice can be read
SDF_WRITABLE:subdevice can be written

number of channels: 24
max data value: 1
ranges:
all chans: [0 V,5 V]

command:
not supported

subdevice 3:
type: 12 (pwm)
flags: 0x00020100

SDF_MODE1:can do mode 1
SDF_WRITABLE:subdevice can be written

number of channels: 8
max data value: 512
ranges:
all chans: [0,1]

command:
not supported

This board has four subdevices. Devices are separated into subdevices that each have a distinct purpose; e.g., analog input, analog
output, digital input/output.

Here’s the information from Comedi’s /proc/comedi file, which indicates what drivers are loaded and which boards are
configured:

cat /proc/comedi

comedi version 0.7.76
format string: "%2d: %-20s %-20s %4d",i,driver_name,board_name,n_subdevices
0: usbduxsigma usbduxsigma 4

usbduxfast:
usbduxfast

usbduxsigma:
usbduxsigma

This documentation feature currently returns the driver name, the device name, and the number of subdevices. Following those
lines are a list of the Comedi kernel driver modules currently loaded, each followed by a list of the board names it recognizes
(names that can be used with comedi_config).

3 Writing Comedi programs

This section describes how Comedi can be used in an application, to communicate data with a set of Comedi devices. Section 4
gives more details about the various acquisition functions with which the application programmer can perform data acquisition
in Comedi.

Also don’t forget to take a good look at the demo directory of the Comedilib source code. It contains lots of examples for the
basic functionalities of Comedi.

3.1 Your first Comedi program

This example requires a card that has analog or digital input. This progam opens the device, gets the data, and prints it out:

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 9 / 161

/*
* Tutorial example #1

* Part of Comedilib

*
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>

*
* This file may be freely modified, distributed, and combined with

* other software, as long as proper attribution is given in the

* source code.

*/

#include <stdio.h> /* for printf() */
#include <comedilib.h>

int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */
int range = 0; /* more on this later */
int aref = AREF_GROUND; /* more on this later */

int main(int argc,char *argv[])
{

comedi_t *it;
int chan = 0;
lsampl_t data;
int retval;

it = comedi_open("/dev/comedi0");
if(it == NULL) {
comedi_perror("comedi_open");
return 1;

}

retval = comedi_data_read(it, subdev, chan, range, aref, &data);
if(retval < 0) {
comedi_perror("comedi_data_read");
return 1;

}

printf("%d\n", data);

return 0;
}

The source code file for the above program can be found in Comedilib, at demo/tut1.c. You can compile the program using

cc tut1.c -lcomedi -lm -o tut1

The (comedi_open) call can only be successful if the comedi0 device file is configured with a valid Comedi driver. Section 2.1
explains how this driver is linked to the “device file”.

The range variable tells Comedi which gain to use when measuring an analog voltage. Since we don’t know (yet) which numbers
are valid, or what each means, we’ll use 0, because it won’t cause errors. Likewise with aref, which determines the analog
reference used.

3.2 Converting between integer data and physical units

If you selected an analog input subdevice, you probably noticed that the output of tut1 is an unsigned number, for example
between 0 and 65535 for a 16 bit analog input. Comedi samples are unsigned, with 0 representing the lowest voltage of the

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 10 / 161

ADC, and a hardware-dependent maximum value representing the highest voltage. Comedi compensates for anything else the
manual for your device says (for example, many boards represent bipolar analog input voltages as signed integers). However,
you probably prefer to have this number translated to a voltage. Naturally, as a good programmer, your first question is: “How
do I do this in a device-independent manner?”

The functions comedi_to_physical(), comedi_to_phys(), comedi_from_physical() and comedi_from_phys()
are used to convert between Comedi’s integer data and floating point numbers corresponding to physical values (voltages, etc.).

3.3 Your second Comedi program

Actually, this is the first Comedi program again, except we’ve added code to convert the integer data value to physical units.

/*
* Tutorial example #2

* Part of Comedilib

*
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>

* Copyright (c) 2008 Frank Mori Hess <fmhess@users.sourceforge.net>

*
* This file may be freely modified, distributed, and combined with

* other software, as long as proper attribution is given in the

* source code.

*/

#include <stdio.h> /* for printf() */
#include <stdlib.h>
#include <comedilib.h>
#include <ctype.h>
#include <math.h>

int subdev = 0; /* change this to your input subdevice */
int chan = 0; /* change this to your channel */
int range = 0; /* more on this later */
int aref = AREF_GROUND; /* more on this later */
const char filename[] = "/dev/comedi0";

int main(int argc, char *argv[])
{

comedi_t *device;
lsampl_t data;
double physical_value;
int retval;
comedi_range *range_info;
lsampl_t maxdata;

device = comedi_open(filename);
if (device == NULL) {
comedi_perror(filename);
return 1;

}

retval = comedi_data_read(device, subdev, chan, range, aref,
&data);

if (retval < 0) {
comedi_perror(filename);
return 1;

}

comedi_set_global_oor_behavior(COMEDI_OOR_NAN);
range_info = comedi_get_range(device, subdev, chan, range);
maxdata = comedi_get_maxdata(device, subdev, chan);

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 11 / 161

printf("[0,%d] -> [%g,%g]\n", maxdata,
range_info->min, range_info->max);

physical_value = comedi_to_phys(data, range_info, maxdata);
if (isnan(physical_value)) {
printf("Out of range [%g,%g]",

range_info->min, range_info->max);
} else {
printf("%g", physical_value);
switch(range_info->unit) {
case UNIT_volt: printf(" V"); break;
case UNIT_mA: printf(" mA"); break;
case UNIT_none: break;
default: printf(" (unknown unit %d)",

range_info->unit);
}
printf(" (%lu in raw units)\n", (unsigned long)data);

}
return 0;

}

The source code file for the above program can be found in the Comedilib source at demo/tut2.c and if installed as a package
usually at /usr/share/doc/libcomedi-dev/demo/ with all the other tutorial/demo files.

3.4 Asynchronous acquisition

Of special importance is the so called "asynchronous data acquisition" where Comedi is sampling in the background at a given
sample rate. The user can retrieve the data whenever it is convenient. Comedi stores the data in a ring-buffer so that programs can
perform other tasks in the foreground, for example plotting data or interacting with the user. This technique is used in programs
such as ktimetrace or comedirecord.

There are two different ways how a sequence of channels is measured during asynchronous acquisition (see also the Figure in
the introduction):

• The channels are measured with the help of a multiplexer which switches to the next channel after each measurement. This
means that the sampling rate is divided by the number of channels.

• The channels are all measured at the same time, for example when every channel has its own converter. In this case the
sampling rate need not to be divided by the number of channels.

How your Comedi device handles the asynchronous acquisition can be found out with the command comedi_board_info -v.

The program demo/tut3.c demonstrates the asynchronous acquisition. The general strategy is always the same: first, we tell
Comedi all sampling parameters such as the sampling rate, the number of channels and anything it needs to know so that it can
run independently in the background. Then Comedi checks our request and it might modify it. For example we might want to
have a sampling rate of 16kHz but we only get 1kHz. Finally we can start the asynchronous acquisition. Once it has been started
we need to check periodically if data is available and request it from Comedi so that its internal buffer won’t overrun.

In summary the asynchonous acquisition is performed in the following way:

• Create a command structure of type comedi_cmd

• Call the function comedi_get_cmd_generic_timed() to fill the command structure with your comedi device, subdevice,
sampling rate and number of channels.

• Create a channel-list and store it in the command structure. This tells comedi which channels should be sampled in the
background.

• Call comedi_command_test() with your command structure. Comedi might modify your requested sampling rate and
channels.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 12 / 161

• Call comedi_command_test() again which now should return zero for success.

• Call comedi_command() to start the asynchronous acquisition. From now on the kernel ringbuffer will be filled at the
specified sampling rate.

• Call periodically the standard function read() and receive the data. The result should always be non zero as long as the
acquisition is running.

• Convert the received data either into lsampl_t or sampl_t depending on the subdevice flag SDF_LSAMPL.

• Poll for data with read() as long as it returns a positive result or until the program terminates.

The program below is a stripped down version of the program cmd.c in the demo directory. It requests data from two channels
at a sampling rate of 1kHz and a total of 10000 samples. which are then printed to stdout. You can pipe the data into a file
and plot it with gnuplot. As mentioned above, central in this program is the loop using the standard C read() command which
receives the buffer contents.

/*
* Example of using commands - asynchronous input

* Part of Comedilib

*
* Copyright (c) 1999,2000,2001 David A. Schleef <ds@schleef.org>

* 2008 Bernd Porr <berndporr@f2s.com>

*
* This file may be freely modified, distributed, and combined with

* other software, as long as proper attribution is given in the

* source code.

*/

#include <stdio.h>
#include <comedilib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/time.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

extern comedi_t *device;

struct parsed_options {
char *filename;
double value;
int subdevice;
int channel;
int aref;
int range;
int verbose;
int n_chan;
int n_scan;
double freq;

};

#define BUFSZ 10000
char buf[BUFSZ];

#define N_CHANS 256
static unsigned int chanlist[N_CHANS];
static comedi_range * range_info[N_CHANS];
static lsampl_t maxdata[N_CHANS];

Comedi 13 / 161

int prepare_cmd_lib(comedi_t *dev, int subdevice, int n_scan,
int n_chan, unsigned period_nanosec,
comedi_cmd *cmd);

void do_cmd(comedi_t *dev,comedi_cmd *cmd);

void print_datum(lsampl_t raw, int channel_index);

char *cmdtest_messages[] = {
"success",
"invalid source",
"source conflict",
"invalid argument",
"argument conflict",
"invalid chanlist",

};

int main(int argc, char *argv[])
{

comedi_t *dev;
comedi_cmd c,*cmd = &c;
int ret;
int total = 0;
int col;
int i;
int subdev_flags;
lsampl_t raw;

struct parsed_options options;

memset(&options, 0, sizeof(options));
options.filename = "/dev/comedi0";
options.subdevice = 0;
options.channel = 0;
options.range = 0;
options.aref = AREF_GROUND;
options.n_chan = 2;
options.n_scan = 10000;
options.freq = 1000.0;

/* open the device */
dev = comedi_open(options.filename);
if (!dev) {
comedi_perror(options.filename);
exit(1);

}

/* Print numbers for clipped inputs */
comedi_set_global_oor_behavior(COMEDI_OOR_NUMBER);

/* Set up channel list */
for (i = 0; i < options.n_chan; i++) {
chanlist[i] =

CR_PACK(options.channel + i, options.range,
options.aref);

range_info[i] =
comedi_get_range(dev, options.subdevice,

options.channel, options.range);
maxdata[i] =

comedi_get_maxdata(dev, options.subdevice,

Comedi 14 / 161

options.channel);
}

/* prepare_cmd_lib() uses a Comedilib routine to find a

* good command for the device. prepare_cmd() explicitly

* creates a command, which may not work for your device. */
prepare_cmd_lib(dev, options.subdevice, options.n_scan,

options.n_chan, 1e9 / options.freq, cmd);

/* comedi_command_test() tests a command to see if the

* trigger sources and arguments are valid for the subdevice.

* If a trigger source is invalid, it will be logically ANDed

* with valid values (trigger sources are actually bitmasks),

* which may or may not result in a valid trigger source.

* If an argument is invalid, it will be adjusted to the

* nearest valid value. In this way, for many commands, you

* can test it multiple times until it passes. Typically,

* if you can’t get a valid command in two tests, the original

* command wasn’t specified very well. */
ret = comedi_command_test(dev, cmd);
if (ret < 0) {
comedi_perror("comedi_command_test");
if(errno == EIO){

fprintf(stderr,
"Ummm... this subdevice doesn’t support commands\n");

}
exit(1);

}
ret = comedi_command_test(dev, cmd);
if (ret < 0) {
comedi_perror("comedi_command_test");
exit(1);

}
fprintf(stderr,"second test returned %d (%s)\n", ret,
cmdtest_messages[ret]);

if (ret != 0) {
fprintf(stderr, "Error preparing command\n");
exit(1);

}

/* comedi_set_read_subdevice() attempts to change the current

* ’read’ subdevice to the specified subdevice if it is

* different. Changing the read or write subdevice might not be

* supported by the version of Comedi you are using. */
comedi_set_read_subdevice(dev, cmd->subdev);
/* comedi_get_read_subdevice() gets the current ’read’

* subdevice. if any. This is the subdevice whose buffer the

* read() call will read from. Check that it is the one we want

* to use. */
ret = comedi_get_read_subdevice(dev);
if (ret < 0 || ret != cmd->subdev) {
fprintf(stderr,

"failed to change ’read’ subdevice from %d to %d\n",
ret, cmd->subdev);

exit(1);
}

/* start the command */
ret = comedi_command(dev, cmd);
if (ret < 0) {
comedi_perror("comedi_command");
exit(1);

Comedi 15 / 161

}
subdev_flags = comedi_get_subdevice_flags(dev, options.subdevice);
col = 0;
while (1) {
ret = read(comedi_fileno(dev),buf,BUFSZ);
if (ret < 0) {

/* some error occurred */
perror("read");
break;

} else if (ret == 0) {
/* reached stop condition */
break;

} else {
int bytes_per_sample;

total += ret;
if (options.verbose) {

fprintf(stderr, "read %d %d\n", ret,
total);

}
if (subdev_flags & SDF_LSAMPL) {

bytes_per_sample = sizeof(lsampl_t);
} else {

bytes_per_sample = sizeof(sampl_t);
}
for (i = 0; i < ret / bytes_per_sample; i++) {

if (subdev_flags & SDF_LSAMPL) {
raw = ((lsampl_t *)buf)[i];

} else {
raw = ((sampl_t *)buf)[i];

}
print_datum(raw, col);
col++;
if (col == options.n_chan) {
printf("\n");
col=0;

}
}

}
}

return 0;
}

/*
* This prepares a command in a pretty generic way. We ask the

* library to create a stock command that supports periodic

* sampling of data, then modify the parts we want.

*/
int prepare_cmd_lib(comedi_t *dev, int subdevice, int n_scan,

int n_chan, unsigned scan_period_nanosec,
comedi_cmd *cmd)

{
int ret;

memset(cmd,0,sizeof(*cmd));

/* This comedilib function will get us a generic timed

* command for a particular board. If it returns -1,

* that’s bad. */
ret = comedi_get_cmd_generic_timed(dev, subdevice, cmd, n_chan,

scan_period_nanosec);

Comedi 16 / 161

if (ret < 0) {
fprintf(stderr,

"comedi_get_cmd_generic_timed failed\n");
return ret;

}

/* Modify parts of the command */
cmd->chanlist = chanlist;
cmd->chanlist_len = n_chan;
if (cmd->stop_src == TRIG_COUNT) {
cmd->stop_arg = n_scan;

}

return 0;
}

void print_datum(lsampl_t raw, int channel_index)
{

double physical_value;

physical_value = comedi_to_phys(raw, range_info[channel_index],
maxdata[channel_index]);

printf("%#8.6g ", physical_value);
}

The source code file for the above program can be found in Comedilib, at demo/tut3.c. You can compile the program using

cc tut3.c -lcomedi -lm -o tut3

For advanced programmers the function comedi_get_buffer_contents() is useful to check if there is actually data in the
ringbuffer so that a call of read() can be avoided for example when the data readout is called by a timer call-back function.

3.5 Further examples

See the demo subdirectory of Comedilib for more example programs. The directory contains a README file with descriptions
of the various demo programs.

4 Acquisition and configuration functions

This Section gives an overview of all Comedi functions with which application programmers can implement their data acquisition.
(With “acquisition” we mean all possible kinds of interfacing with the cards: input, output, configuration, streaming, etc.)
Section 5 explains the function calls in full detail.

4.1 Functions for single acquisition

The simplest form of using Comedi is to get one single sample to or from an interface card. This sections explains how to do
such simple digital and analog acquisitions.

4.1.1 Single digital acquisition

Many boards supported by Comedi have digital input and output channels; i.e., channels that can only produce a 0 or a 1. Some
boards allow the direction (input or output) of each channel to be specified independently in software.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 17 / 161

Comedi groups digital channels into a subdevice, which is a group of digital channels that have the same characteristics. For
example, digital output lines will be grouped into a digital output subdevice, bidirectional digital lines will be grouped into a
digital I/O subdevice. Thus, there can be multiple digital subdevices on a particular board.

Individual bits on a digital I/O device can be read and written using the functions comedi_dio_read() and comedi_dio_
write():

int comedi_dio_read(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int *bit);

int comedi_dio_write(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int bit);

The device parameter is a pointer to a successfully opened Comedi device. The subdevice and channel parameters are
positive integers that indicate which subdevice and channel is used in the acquisition. The integer bit contains the value of the
acquired bit.

The direction of bidirectional lines can be configured using the function comedi_dio_config():

int comedi_dio_config(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int dir);

The parameter dir should be either COMEDI_INPUT or COMEDI_OUTPUT. Many digital I/O subdevices group channels into
blocks for configuring direction. Changing one channel in a block changes the entire block.

Multiple channels can be read and written simultaneously using the function comedi_dio_bitfield2():

int comedi_dio_bitfield2(comedi_t *device, unsigned int subdevice, unsigned int write_mask, unsigned int *bits, unsigned int
base_channel);

Each channel from base_channel to base_channel + 31 is assigned to a bit in the write_mask and bits bitfield with bit
0 assigned to channel base_channel, bit 1 assigned to channel base_channel + 1, etc. If a bit in write_mask is set, the
corresponding bit in *bits will be written to the digital output line corresponding to the channel given by base_channel plus
the bit number. Each digital line is then read and placed into *bits. The value of bits in *bits corresponding to digital output
lines is undefined and device-specific. Channel base_channel + 0 is the least significant bit in the bitfield. No more than 32
channels at once can be accessed using this method. Warning! Older versions of Comedi may ignore base_channel and treat
it as 0 unless the subdevice has more than 32 channels.

The digital acquisition functions seem to be very simple, but, behind the implementation screens of the Comedi kernel module,
they are executed as special cases of the general instruction command.

4.1.2 Single analog acquisition

Analog Comedi channels can produce data values that are samples from continuous analog signals. These samples are integers
with a significant content in the range of, typically, 8, 10, 12, or 16 bits.

Single samples can be read from an analog channel using the function comedi_data_read():

int comedi_data_read(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
lsampl_t *data);

This reads one such data value from a Comedi channel, and puts it in the user-specified data buffer.

The range parameter is the zero-based index of one of the gain ranges supported by the channel. This is a number from
0 to N-1 where N is the number of ranges supported by the channel. Use the function comedi_get_n_ranges() to get the
number of ranges supported by the channel, the function comedi_find_range() to search for a suitable range, or the function
comedi_get_range() to get the details of a supported range.

The aref parameter specifies an analog reference to use: AREF_GROUND, AREF_COMMON, AREF_DIFF, or AREF_OTHER.
Use the function comedi_get_subdevice_flags() to see which analog references are supported by the subdevice.

In the opposite direction, single samples can be written to an analog output channel using the function comedi_data_write():

int comedi_data_write(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
lsampl_t data);

Raw data values read or written by the above functions are unsigned integers less than, or equal to, the maximum sample value
of the channel, which can be determined using the function comedi_get_maxdata():

lsampl_t comedi_get_maxdata(comedi_t *device, unsigned int subdevice, unsigned int channel);

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 18 / 161

Conversion between raw data values and uncalibrated physical units can be performed by the functions comedi_to_phys()
and comedi_from_phys():

double comedi_to_phys(lsampl_t data, comedi_range *range, lsampl_t maxdata);

lsampl_t comedi_from_phys(double data, comedi_range *range, lsampl_t maxdata);

There are some data structures in these commands that are not fully self-explanatory:

• comedi_t: this data structure contains all information that a user program has to know about an open Comedi device. The
programmer doesn’t have to fill in this data structure manually: it gets filled in by opening the device.

• lsampl_t: this “data structure” represents one single sample. On most architectures, it’s nothing more than a 32 bits value.
Internally, Comedi does some conversion from raw sample data to “correct” integers. This is called “data munging”.

• comedi_range: this holds the minimum and maximum physical values for a gain range supported by a channel of a subdevice,
and specifies the units. This can be used in combination with the channel’s “maxdata” value to convert between unsigned integer
sample values (of type lsampl_t or sampl_t) and physical units in a nominal (uncalibrated) way using the comedi_to_phys()
and comedi_from_phys() functions. Use the comedi_get_maxdata() function to get the “maxdata” value for the
channel.

Most functions specify the range to be used for a channel by a zero-based index into the list of ranges supported by the
channel. Depending on the device and subdevice, different channels on the subdevice may or may not share the same list of
ranges, that is, ranges may or may not be channel-specific. (The SDF_RANGETYPE subdevice flag indicates whether ranges
are channel-specific.)

Each single acquisition by, for example, comedi_data_read() requires quite some overhead, because all the arguments of
the function call are checked. If multiple acquisitions must be done on the same channel, this overhead can be avoided by using
a function that can read more than one sample, comedi_data_read_n():

int comedi_data_read_n(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
lsampl_t *data, unsigned int n);

The number of samples, n, is limited by the Comedi implementation (to a maximum of 100 samples), because the call is blocking.

The start of the a single data acquisition can also be delayed by a specified number of nano-seconds using the function comedi
_data_read_delayed():

int comedi_data_read_delayed(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned
int aref, lsampl_t *data, unsigned int nano_sec);

All these read and write acquisition functions are implemented on top of the generic instruction command.

4.2 Instructions for multiple acquisitions

The instruction is one of the most generic, overloaden and flexible functions in the Comedi API. It is used to execute a multiple
of identical acquisitions on the same channel, but also to perform a configuration of a channel. An instruction list is a list
of instructions, possibly on different channels. Both instructions and instructions lists are executed synchronously, i.e., while
blocking the calling process. This is one of the limitations of instructions; the other one is that they cannot code an acquisition
involving timers or external events. These limits are eliminated by the command acquisition primitive.

4.2.1 The instruction data structure

All the information needed to execute an instruction is stored in the comedi_insn data structure:

typedef struct comedi_insn_struct {
unsigned int insn; // integer encoding the type of acquisition

// (or configuration)
unsigned int n; // number of elements in data array
lsampl_t *data; // pointer to data buffer
unsigned int subdev; // subdevice
unsigned int chanspec; // encoded channel specification
unsigned int unused[3];

} comedi_insn;

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 19 / 161

Because of the large flexibility of the instruction function, many types of instruction do not need to fill in all fields, or attach
different meanings to the same field. But the current implementation of Comedi requires the data field to be at least one byte
long.

The insn member of the instruction data structure determines the type of acquisition executed in the corresponding instruction:

• INSN_READ: the instruction executes a read on an analog channel.

• INSN_WRITE: the instruction executes a write on an analog channel.

• INSN_BITS: indicates that the instruction must read or write values on multiple digital I/O channels.

• INSN_GTOD: the instruction performs a “Get Time Of Day” acquisition.

• INSN_WAIT: the instruction blocks for a specified number of nanoseconds.

4.2.2 Instruction execution

Once an instruction data structure has been filled in, the corresponding instruction is executed with the function comedi_do_
insn():

int comedi_do_insn(comedi_t *device, comedi_insn *instruction);

Many Comedi instructions are shortcuts that relieve the programmer from explicitly filling in the data structure and calling the
comedi_do_insn() function.

A list of instructions can be executed in one function call using the function comedi_do_insnlist():

int comedi_do_insnlist(comedi_t *device, comedi_insnlist *list);

The parameter list is a pointer to a comedi_insnlist data structure holding a pointer to an array of comedi_insn and the number
of instructions in the list:

typedef struct comedi_insnlist_struct {
unsigned int n_insns;
comedi_insn *insns;

} comedi_insnlist;

The number of instructions in the list is limited in the implementation, because instructions are executed synchronously, i.e., the
call blocks until the whole instruction (list) has finished.

4.3 Instructions for configuration

Section 4.2 explains how instructions are used to do acquisition on channels. This section explains how they are used to configure
a subdevice. There are various sorts of configurations, and the specific information for each different configuration possibility is
to be specified via the data buffer of the instruction data structure. (So, the pointer to a lsampl_t is misused as a pointer to an
array with board-specific information.)

Using INSN_CONFIG as the insn member in an instruction data structure indicates that the instruction will not perform ac-
quisition on a channel, but will configure that channel. The chanspec member in the comedi_insn data structure, contains the
channel to be configured. The zeroth element of the data array is always an id that specifies what type of configuration instruction
is being performed. The meaning of rest of the elements in the data array depend on the configuration instruction id. Some of the
possible ids are summarised in the table below, along with the meanings of the data array elements for each type of configuration
instruction.

http://www.comedi.org
http://www.comedi.org

Comedi 20 / 161

data[0] Description

n (num-
ber of
ele-
ments
in data
array)

Meanings of data[1], ...,
data[n-1]

INSN_CONFIG_DIO_INPUT

Configure a DIO line as input. It is
easier to use
comedi_dio_config() than to
use this configuration instruction
directly.

1 n/a

INSN_CONFIG_DIO_OUTPUT

Configure a DIO line as output. It
is easier to use
comedi_dio_config() than to
use this configuration instruction
directly.

1 n/a

INSN_CONFIG_ALT_SOURCE

Select an alternate input source.
This instruction is used by
calibration programs to configure
analog input channels which can
be redirected to read internal
calibration references. You need
to set the CR_ALT_SOURCE flag
in the chanspec when reading to
actually read from the configured
alternate input source. If you are
using comedi_data_read(),
then the channel parameter can be
bitwise or’d with the
CR_ALT_SOURCE flag.

2 data[1]: alternate input source.

INSN_CONFIG_BLOCK_SIZE

Specify block size for
asynchonous command data.
When performing streaming input,
many boards accumulate samples
in internal fifos and transfer them
to the host computer in chunks.
Some drivers let you suggest a
size in bytes for how big a the
chunks should be. This lets you
tune how often the host computer
is interrupted with a new chunk of
data.

2

data[1]: The desired block size in
bytes. The actual configured block
size is writen back to data[1] after
the instruction completes. This
instruction acts purely as a query
if the block size is set to zero.

INSN_CONFIG_DIO_QUERY

Queries the configuration of a
DIO line to see if it is an input or
output. It is probably easier to use
the comedilib function
comedi_dio_get_config()
than to use this instruction
directly.

2

data[1]: The instruction sets this
element to either
COMEDI_INPUT or
COMEDI_OUTPUT.

See the comedilib demo program demo/choose_clock.c for an example of using a configuration instruction.

4.4 Instruction for internal triggering

This special instruction has INSN_INTTRIG as the insn member in its instruction data structure. Its execution causes an
internal triggering event. This event can, for example, cause the device driver to start a conversion, or to stop an ongoing

Comedi 21 / 161

acquisition. The exact meaning of the triggering depends on the card and its particular driver.

The data[0] element of the INSN_INTTRIG instruction is reserved for future use, and should be set to 0.

4.5 Commands for streaming acquisition

The most powerful Comedi acquisition primitive is the command. It’s powerful because, with one single command, the program-
mer launches:

• a possibly infinite sequence of acquisitions,

• accompanied with various callback functionalities (DMA, interrupts, driver-specific callback functions),

• for any number of channels,

• with an arbitrary order of channels in each scan (possibly even with repeated channels per scan),

• and with various scan triggering sources, external (i.e., hardware pulses) as well as internal (i.e., pulses generated on the DAQ
card itself, or generated by a software trigger instruction).

This command functionality exists in the Comedi API, because various data acquisition devices have the capability to perform
this kind of complex acquisition, driven by either on-board or off-board timers and triggers.

A command specifies a particular data acquisition sequence, which consists of a number of scans, and each scan is comprised of
a number of conversions, which usually corresponds to a single A/D or D/A conversion. So, for example, a scan could consist
of sampling channels 1, 2 and 3 of a particular device, and this scan should be repeated 1000 times, at intervals of 1 millisecond
apart.

The command function is complementary to the configuration instruction function: each channel in the command’s chanlist
should first be configured by an appropriate instruction.

4.5.1 Executing a command

A command is executed by the function comedi_command():

int comedi_command(comedi_t *device, comedi_cmd *command);

The following sections explain the meaning of the comedi_cmd data structure. Filling in this structure can be quite complicated,
and requires good knowledge about the exact functionalities of the DAQ card. So, before launching a command, the application
programmer is adviced to check whether this complex command data structure can be successfully parsed. So, the typical
sequence for executing a command is to first send the command through comedi_command_test() once or twice. The test
will check that the command is valid for the particular device, and often makes some adjustments to the command arguments,
which can then be read back by the user to see the actual values used.

A Comedi program can find out on-line what the command capabilities of a specific device are, by means of the comedi_get
_cmd_src_mask() function.

4.5.2 The command data structure

The command executes according to the information about the requested acquisition, which is stored in the comedi_cmd data
structure:

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct {
unsigned int subdev; // which subdevice to sample
unsigned int flags; // encode some configuration possibilities

// of the command execution; e.g.,
// whether a callback routine is to be
// called at the end of the command

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 22 / 161

unsigned int start_src; // event to make the acquisition start
unsigned int start_arg; // parameters that influence this start

unsigned int scan_begin_src; // event to make a particular scan start
unsigned int scan_begin_arg; // parameters that influence this start‘

unsigned int convert_src; // event to make a particular conversion start
unsigned int convert_arg; // parameters that influence this start

unsigned int scan_end_src; // event to make a particular scan terminate
unsigned int scan_end_arg; // parameters that influence this termination

unsigned int stop_src; // what make the acquisition terminate
unsigned int stop_arg; // parameters that influence this termination

unsigned int *chanlist; // pointer to list of channels to be sampled
unsigned int chanlist_len; // number of channels to be sampled

sampl_t *data; // address of buffer
unsigned int data_len; // number of samples to acquire

};

The start and end of the whole command acquisition sequence, and the start and end of each scan and of each conversion, is
triggered by a so-called event. More on these in Section 4.5.3.

The subdev member of the comedi_cmd structure is the index of the subdevice the command is intended for. The comedi_fi
nd_subdevice_by_type() function can be useful in discovering the index of your desired subdevice.

The chanlist member of the comedi_cmd data structure should point to an array whose number of elements is specified by
chanlist_len (this will generally be the same as the scan_end_arg). The chanlist specifies the sequence of channels and
gains (and analog references) that should be stepped through for each scan. The elements of the chanlist array should be
initialized by “packing” the channel, range and reference information together with the CR_PACK() macro.

The data and data_len members can be safely ignored when issueing commands from a user-space program. They only have
meaning when a command is sent from a kernel module using the kcomedilib interface, in which case they specify the buffer
where the driver should write/read its data to/from.

The final member of the comedi_cmd structure is the flags field, i.e., bits in a word that can be bitwise-or’d together. The
meaning of these bits are explained in Section 4.5.4.

4.5.3 The command trigger events

A command is a very versatile acquisition instruction, in the sense that it offers lots of possibilities to let different hardware
and software sources determine when acquisitions are started, performed, and stopped. More specifically, the command data
structure has five types of events: start the acquisition, start a scan, start a conversion, stop a scan, and stop the acquisition. Each
event can be given its own source (the ..._src members in the comedi_cmd data structure). And each event source can have
a corresponding argument (the ..._arg members of the comedi_cmd data structure) whose meaning depends on the type of
source trigger. For example, to specify an external digital line “3” as a source (in general, any of the five event sources), you
would use src=TRIG_EXT and arg=3.

The following paragraphs discuss in somewhat more detail the trigger event sources(..._src), and the corresponding arguments
(..._arg).

The start of an acquisition is controlled by the start_src events. The available options are:

• TRIG_NOW: the “start” event occurs start_arg nanoseconds after the command is set up. Currently, only start_arg=0 is
supported.

• TRIG_FOLLOW: (For an output device.) The “start” event occurs when data is written to the buffer.

Comedi 23 / 161

• TRIG_EXT: the “start” event occurs when an external trigger signal occurs; e.g., a rising edge of a digital line. start_arg
chooses the particular digital line.

• TRIG_INT: the “start” event occurs on a Comedi internal signal, which is typically caused by an INSN_INTTRIG instruction.

The start of the beginning of each scan is controlled by the scan_begin_src events. The available options are:

• TRIG_TIMER: “scan begin” events occur periodically. The time between “scan begin” events is scan_begin_arg nanosec-
onds.

• TRIG_FOLLOW: The “scan begin” event occurs immediately after a “scan end” event occurs.

• TRIG_EXT: the “scan begin” event occurs when an external trigger signal occurs; e.g., a rising edge of a digital line. scan_b
egin_arg chooses the particular digital line.

The scan_begin_arg used here may not be supported exactly by the device, but it will be adjusted to the nearest supported
value by comedi_command_test().

The timing between each sample in a scan is controlled by the convert_src events. The available options are:

• TRIG_TIMER: the conversion events occur periodically. The time between “convert” events is convert_arg nanoseconds.

• TRIG_EXT: the conversion events occur when an external trigger signal occurs, e.g., a rising edge of a digital line. convert
_arg chooses the particular digital line.

• TRIG_NOW: All conversion events in a scan occur simultaneously.

The end of each scan is almost always specified by setting the scan_end_src event to TRIG_COUNT, with the argument being
the same as the number of channels in the chanlist. You could probably find a device that allows something else, but it would
be strange.

The end of an acquisition is controlled by stop_src event. The available options are:

• TRIG_COUNT: stop the acquisition after stop_arg scans.

• TRIG_NONE: perform continuous acquisition, until stopped using comedi_cancel().

stop_arg is used to denote how many samples should be used in the continuous acquisition. If stop_arg is set to 0, the
entire output buffer may contribute to the output. If stop_arg != 0, only the memory for stop_arg samples will be used.
Many drivers do not yet support stop_arg!=0 and should enforce stop_arg=0 via comedi_command_test.

There are a couple of less usual or not yet implemented events:

• TRIG_TIME: cause an event to occur at a particular time.

(This event source is reserved for future use.)

• TRIG_OTHER: driver specific event trigger.

This event can be useful as any of the trigger sources. Its exact meaning is driver specific, because it implements a feature
that otherwise does not fit into the generic Comedi command interface. Configuration of TRIG_OTHER features are done by
INSN_CONFIG instructions.

The argument is reserved and should be set to 0.

Not all event sources are applicable to all events. Supported trigger sources for specific events depend significantly on your
particular device, and even more on the current state of its device driver. The comedi_get_cmd_src_mask() function is
useful for determining what trigger sources a subdevice supports.

http://www.comedi.org
http://www.comedi.org

Comedi 24 / 161

4.5.4 The command flags

The flags field in the command data structure is used to specify some “behaviour” of the acquisitions in a command. The
meaning of the field is as follows:

• TRIG_RT: ask the driver to use a hard real-time interrupt handler. This will reduce latency in handling interrupts from your
data aquisition hardware. It can be useful if you are sampling at high frequency, or if your hardware has a small onboard data
buffer. You must have a real-time kernel (RTAI or RTLinux/GPL) and must compile Comedi with real-time support, or this
flag will do nothing.

• TRIG_WAKE_EOS: where “EOS” stands for “End of Scan”. Some drivers will change their behaviour when this flag is set,
trying to transfer data at the end of every scan (instead of, for example, passing data in chunks whenever the board’s hardware
data buffer is half full). This flag may degrade a driver’s performance at high frequencies, because the end of a scan is, in
general, a much more frequent event than the filling up of the data buffer.

• TRIG_ROUND_NEAREST: round to nearest supported timing period, the default. This flag (as well as the following three),
indicates how timing arguments should be rounded if the hardware cannot achieve the exact timing requested.

• TRIG_ROUND_DOWN: round period down.

• TRIG_ROUND_UP: round period up.

• TRIG_ROUND_UP_NEXT: this one doesn’t do anything, and I don’t know what it was intended to do. . . ?

• TRIG_DITHER: enable dithering? Dithering is a software technique to smooth the influence of discretization “noise”.

• TRIG_DEGLITCH: enable deglitching? Another “noise” smoothing technique.

• TRIG_WRITE: write to bidirectional devices. Could be useful, in principle, if someone wrote a driver that supported com-
mands for a digital I/O device that could do either input or output.

• TRIG_BOGUS: do the motions?

• TRIG_CONFIG: perform configuration, not triggering. This is a legacy of the deprecated comedi_trig_struct data structure,
and has no function at present.

4.5.5 Anti-aliasing

If you wish to aquire accurate waveforms, it is vital that you use an anti-alias filter. An anti-alias filter is a low-pass filter used
to remove all frequencies higher than the Nyquist frequency (half your sampling rate) from your analog input signal before you
convert it to digital. If you fail to filter your input signal, any high frequency components in the original analog signal will create
artifacts in your recorded digital waveform that cannot be corrected.

For example, suppose you are sampling an analog input channel at a rate of 1000 Hz. If you were to apply a 900 Hz sine wave to
the input, you would find that your sampling rate is not high enough to faithfully record the 900 Hz input, since it is above your
Nyquist frequency of 500 Hz. Instead, what you will see in your recorded digital waveform is a 100 Hz sine wave! If you don’t
use an anti-alias filter, it is impossible to tell whether the 100 Hz sine wave you see in your digital signal was really produced by
a 100 Hz input signal, or a 900 Hz signal aliased to 100 Hz, or a 1100 Hz signal, etc.

In practice, the cutoff frequency for the anti-alias filter is usually set 10% to 20% below the Nyquist frequency due to fact that
real filters do not have infinitely sharp cutoffs.

4.6 Slowly-varying inputs

Note: The functions described here use an old feature that is no longer implemented by the Comedi kernel layer. THEY
WILL NOT WORK!

Sometimes, your input channels change slowly enough that you are able to average many successive input values to get a more
accurate measurement of the actual value. In general, the more samples you average, the better your estimate gets, roughly by a
factor of sqrt(number_of_samples). Obviously, there are limitations to this:

http://www.rtai.org
http://www.rtlinux-gpl.org/
http://www.comedi.org
http://www.comedi.org

Comedi 25 / 161

• you are ultimately limited by “Spurious Free Dynamic Range”. This SFDR is one of the popular measures to quantify how
much noise a signal carries. If you take a Fourier transform of your signal, you will see several “peaks” in the transform: one
or more of the fundamental harmonics of the measured signal, and lots of little “peaks” (called “spurs”) caused by noise. The
SFDR is then the difference between the amplitude of the fundamental harmonic and of the largest spur (at frequencies below
half of the Nyquist frequency of the DAQ sampler!).

• you need to have some noise on the input channel, otherwise you will be averaging the same number N times. (Of course, this
only holds if the noise is large enough to cause at least a one-bit discretization.)

• the more noise you have, the greater your SFDR, but it takes many more samples to compensate for the increased noise.

• if you feel the need to average samples for, for example, two seconds, your signal will need to be very slowly-varying, i.e., not
varying more than your target uncertainty for the entire two seconds.

As you might have guessed, the Comedi library has functions to help you in your quest to accurately measure slowly varying
inputs:

int comedi_sv_init(comedi_sv_t *sv, comedi_t *device, unsigned int subdevice, unsigned int channel);

The above function comedi_sv_init() initializes the comedi_sv_t data structure, used to do the averaging acquisition:

typedef struct comedi_sv_struct {
comedi_t *dev;
unsigned int subdevice;
unsigned int chan;

/* range policy */
int range;
int aref;

/* number of measurements to average (for analog inputs) */
int n;

lsampl_t maxdata;
} comedi_sv_t;

The actual acquisition is done with the function comedi_sv_measure():

int comedi_sv_measure(comedi_sv_t *sv, double *data);

The number of samples over which the function comedi_sv_measure() averages is limited by the implementation (currently
the limit is 100 samples).

One typical use for this function is the measurement of thermocouple voltages. And the Comedi self-calibration utility also uses
these functions. On some hardware, it is possible to tell it to measure an internal stable voltage reference, which is typically going
to be very slowly varying; on the kilosecond time scale or more. So, it is reasonable to measure millions of samples, to get a very
accurate measurement of the A/D converter output value that corresponds to the voltage reference. Sometimes, however, this is
overkill, since there is no need to perform a part-per-million calibration to a standard that is only accurate to a part-per-thousand.

4.7 Experimental functionality

The following subsections document functionality that has not yet matured. Most of this functionality has even not been imple-
mented yet in any single device driver. This information is included here, in order to stimulate discussion about their API, and to
encourage pioneering implementations.

4.7.1 Digital input combining machines

(Status: experimental (i.e., no driver implements this yet))

When one or several digital inputs are used to modify an output value, either an accumulator or a single digital line or bit,
a bitfield structure is typically used in the Comedi interface. The digital inputs have two properties, “sensitive” inputs and

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 26 / 161

“modifier” inputs. Edge transitions on sensitive inputs cause changes in the output signal, whereas modifier inputs change the
effect of edge transitions on sensitive inputs. Note that inputs can be both modifier inputs and sensitive inputs.

For simplification purposes, it is assumed that multiple digital inputs do not change simultaneously.

The combined state of the modifier inputs determine a modifier state. For each combination of modifier state and sensitive input,
there is a set of bits that determine the effect on the output value due to positive or negative transitions of the sensitive input. For
each transition direction, there are two bits defined as follows:

00 transition is ignored.

01 accumulator is incremented, or output is set.

10 accumulator is decremented, or output is cleared.

11 reserved.

For example, a simple digital follower is specified by the bit pattern 01 10, because it sets the output on positive transitions of the
input, and clears the output on negative transitions. A digital inverter is similarily 10 01. These systems have only one sensitive
input.

As another example, a simple up counter, which increments on positive transitions of one input, is specified by 01 00. This
system has only one sensitive input.

When multiple digital inputs are used, the inputs are divided into two types, inputs which cause changes in the accumulator, and
those that only modify the meaning of transitions on other inputs. Modifier inputs do not require bitfields, but there needs to be a
bitfield of length 4*(2ˆ(N-1)) for each edge sensitive input, where N is the total number of inputs. Since N is usually 2 or 3, with
only one edge sensitive input, the scaling issues are not significant.

4.7.2 Analog filtering configuration

(Status: design (i.e., no driver implements this yet).)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

Some devices have the capability to add white noise (dithering) to analog input measurement. This additional noise can then be
averaged out, to get a more accurate measurement of the input signal. It should not be assumed that channels can be separately
configured. A simple design can use 1 bit to turn this feature on/off.

Some devices have the capability of changing the glitch characteristics of analog output subsytems. The default (off) case should
be where the average settling time is lowest. A simple design can use 1 bit to turn this feature on/off.

Some devices have a configurable analog filters as part of the analog input stage. A simple design can use 1 bit to enable/disable
the filter. Default is disabled, i.e., the filter being bypassed, or if the choice is between two filters, the filter with the largest
bandwidth.

4.7.3 Analog Output Waveform Generation

(Status: design (i.e., no driver implements this yet).)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

Some devices have the ability to cyclicly loop through samples kept in an on-board analog output FIFO. This config should allow
the user to enable/disable this mode.

This config should allow the user to configure the number of samples to loop through. It may be necessary to configure the
channels used.

Comedi 27 / 161

4.7.4 Extended Triggering

(Status: alpha.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

This section covers common information for all extended triggering configuration, and doesn’t describe a particular type of
extended trigger.

Extended triggering is used to configure triggering engines that do not fit into commands. In a typical programming sequence,
the application will use configuration instructions to configure an extended trigger, and a command, specifying TRIG_OTHER
as one of the trigger sources.

Extended trigger configuration should be designed in such a way that the user can probe for valid parameters, similar to how
command testing works. An extended trigger configuration instruction should not configure the hardware directly, rather, the
configuration should be saved until the subsequent command is issued. This allows more flexibility for future interface changes.

It has not been decided whether the configuration stage should return a token that is then used as the trigger argument in the
command. Using tokens is one method to satisfy the problem that extended trigger configurations may have subtle compatiblity
issues with other trigger sources/arguments that can only be determined at command test time. Passing all stages of a command
test should only be allowed with a properly configured extended trigger.

Extended triggers must use data[1] as flags. The upper 16 bits are reserved and used only for flags that are common to all
extended triggers. The lower 16 bits may be defined by the particular type of extended trigger.

Various types of extended triggers must use data[1] to know which event the extended trigger will be assigned to in the command
structure. The possible values are an OR’d mask of the following:

• COMEDI_EV_START

• COMEDI_EV_SCAN_BEGIN

• COMEDI_EV_CONVERT

• COMEDI_EV_SCAN_END

• COMEDI_EV_STOP

4.7.5 Analog Triggering

(Status: alpha. The ni_mio_common.c driver implements this feature.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

The data field of the instruction data structure is used as follows:

data[1] trigger and combining machine configuration.

data[2] analog triggering signal chanspec.

data[3] primary analog level.

data[4] secondary analog level.

Analog triggering is described by a digital combining machine that has two sensitive digital inputs. The sensitive digital inputs
are generated by configurable analog comparators. The analog comparators generate a digital 1 when the analog triggering signal
is greater than the comparator level. The digital inputs are not modifier inputs. Note, however, there is an effective modifier due
to the restriction that the primary analog comparator level must be less than the secondary analog comparator level.

If only one analog comparator signal is used, the combining machine for the secondary input should be set to ignored, and the
secondary analog level should be set to 0.

Comedi 28 / 161

The interpretation of the chanspec and voltage levels is device dependent, but should correspond to similar values of the analog
input subdevice, if possible.

Notes: Reading range information is not addressed. This makes it difficult to convert comparator voltages to data values.

Possible extensions: A parameter that specifies the necessary time that the set condition has to be true before the trigger is
generated. A parameter that specifies the necessary time that the reset condition has to be true before the state machine is reset.

4.7.6 Bitfield Pattern Matching Extended Trigger

(Status: design. No driver implements this feature yet.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is ignored.

The data field of the instruction data structure is used as follows:

data[1] trigger flags.

data[2] mask.

data[3] pattern.

The pattern matching trigger issues a trigger when all of a specifed set of input lines match a specified pattern. If the device
allows, the input lines should correspond to the input lines of a digital input subdevice, however, this will necessarily be device
dependent. Each possible digital line that can be matched is assigned a bit in the mask and pattern. A bit set in the mask indicates
that the input line must match the corresponding bit in the pattern. A bit cleared in the mask indicates that the input line is
ignored.

Notes: This only allows 32 bits in the pattern/mask, which may be too few. Devices may support selecting different sets of lines
from which to match a pattern.

Discovery: The number of bits can be discovered by setting the mask to all 1’s. The driver must modify this value and return -
EAGAIN.

4.7.7 Counter configuration

(Status: design. No driver implements this feature yet.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is used to specify which counter to use. (I.e., the counter is a Comedi
channel.)

The data field of the instruction data structure is used as follows:

data[1] trigger configuration.

data[2] primary input chanspec.

data[3] primary combining machine configuration.

data[4] secondary input chanspec.

data[5] secondary combining machine configuration.

data[6] latch configuration.

http://www.comedi.org

Comedi 29 / 161

Note that this configuration is only useful if the counting has to be done in software. Many cards offer configurable counters in
hardware; e.g., general purpose timer cards can be configured to act as pulse generators, frequency counters, timers, encoders,
etc.

Counters can be operated either in synchronous mode (using INSN_READ) or asynchronous mode (using commands), similar to
analog input subdevices. The input signal for both modes is the accumulator. Commands on counter subdevices are almost always
specified using scan_begin_src = TRIG_OTHER, with the counter configuration also serving as the extended configuration
for the “scan begin” source.

Counters are made up of an accumulator and a combining machine that determines when the accumulator should be incremented
or decremented based on the values of the input signals. The combining machine optionally determines when the accumulator
should be latched and put into a buffer. This feature is used in asynchronous mode.

Note: How to access multiple pieces of data acquired at each event?

4.7.8 One source plus auxiliary counter configuration

(Status: design. No driver implements this feature yet.)

The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is used to . . .

The data field of the instruction data structure is used as follows:

data[1] is flags, including the flags for the command triggering configuration. If a command is not subsequently issued on the
subdevice, the command triggering portion of the flags are ignored.

data[2] determines the mode of operation. The mode of operation is actually a bitfield that encodes what to do for various
transitions of the source signals.

data[3], data[4] determine the primary source for the counter, similar to the ..._src and the ..._arg fields used in the
command data structure.

Notes: How to specify which events cause a latch and push, and what should get latched?

4.7.9 National Instruments General Purpose Counters/Timers (GPCT)

Counters/timers and pulse generators are fairly different in terms of functionality, but they correspond to similar devices seen
either as input or output. When generalising, these devices are both referred to as "counters". The NI boards provide a couple of
such counters, under the name of GPCT. A counter is made of the following basic elements:

Input source the signal measured or the clock of the pulse generation.

Gate controls when the counting (or sampling) occurs.

Register holds the current count.

Out for the output counters (pulse generators), the output signal.

There are many different ways to count, time or generate pulses. All the modes rely on the counter and some particular con-
figuration. For example, in a typical buffered counting mode, the source is the (digital) signal that is measured, the counter is
increased at every rising edge of the signal, the gate is the (digital) signal indicating when to save the counter to memory. It
is preferable you get first familiarized with these various modes by reading your NI board documentation before reading the
following description on the mapping to the comedi interface.

Each counter of the board is represented in comedi as a subdevice of type COMEDI_SUBD_COUNTER. Each subdevice has a
device file associated (eg, /dev/comedi0_subd11) in order to read or write buffered data from or to the counter. Note
that the comedi subdevice has three "channels". In most case, only channel 0 is to be used. Reading or writing on channel
0 corresponds to reading/writing the counter value. The GPCT also has two registers named A and B, they can be accessed
respectively via channels 1 and 2.

Comedi 30 / 161

To configure the behaviour of the counter with comedi, the function comedi_set_counter_mode() is used. The possible
mode values are to be found in the ni_gpct_mode_bits enum constants. For instance, by default the counter is cumulative, even
in buffered counting. To reinitialise it after each sampling (ie, after an edge on the gate signal), one can add the NI_GPCT_LOA
DING_ON_GATE_BIT to the mode. In that case, the counter will be reset to the value of the A register after each sampling.

To configure the signal to be used as the "source", one uses the comedi_set_clock_source() with one constant from the
ni_gpct_clock_source_bits enum. When the period of the signal is fixed and known, it should be specified as the last parameter
of the method, otherwise 0 should be passed. Note that in comedi this is called "clock" because in timer and pulse generator, this
signal is used as the clock.

To configure the signal to be used as the "gate", one uses the comedi_set_gate_source() with one constant from the
ni_gpct_gate_select enum. When the gate signal is not be used, NI_GPCT_DISABLED_GATE_SELECT should be specified.
Some NI boards have two gates, but the behaviour associated with the second gate is usually unknown so it is recommended to
disable it. Note that this is called "gate" because in some modes, this signal is used to block/unblock the counter.

The function comedi_reset() will stop and reset a counter. After being configured, to start a counter, it should be "armed",
which can be done either with the comedi_arm() function (for simple counting mode), or with the start_src member of the
command (for buffered counting).

One side thing to mention is the signal routing of the NI card, which is done via the PFIs (Programmable Function Inputs). NI’s
naming is confusing because they use the same name for the terminal (ie, physical input/output pins) and for the signal (ie, the
logical information that controls/indicates a specific event). The routing allows to configure which signal goes to a PFI terminal.
This is done via comedi_set_routing(), with subdevice being the special DIO comedi subdevice (eg, 7 on M-series), the
PFI terminal number as channel, the signal that should be routed to it encoded as source with one of the constants from the
ni_pfi_routing enum. The direction of the pin must also be correctly configured (ie, whether it is used as input or output). This is
done via comedi_dio_config() with the same subdevice and channel, and either COMEDI_INPUT or COMEDI_OUTPUT.

4.7.10 National Instruments RTSI trigger bus

A number of NI boards support the RTSI (Real Time System Integration) bus. It’s primary use is to synchronize multiple DAQ
cards. On PXI boards, the RTSI lines correspond to the PXI trigger lines 0 to 7. PCI boards use cables to connect to their
RTSI ports. The RTSI bus consists of 8 digital signal lines numbered 0 to 7 that are bi-directional. Each of these signal lines
can be configured as an input or output, and the signal appearing on the output of each line can be configured to one of several
internal board timing signals (although on older boards RTSI line 7 can only be used for the clock signal). The ni_pcimio,
ni_atmio, and ni_mio_cs drivers expose the RTSI bus as a digital I/O subdevice (subdevice number 10).

The functions comedi_dio_config() and comedi_dio_get_config() can be used on the RTSI subdevice to set/query
the direction (input or output) of each of the RTSI lines individually.

The subdevice also supports the INSN_CONFIG_SET_CLOCK_SRC and INSN_CONFIG_GET_CLOCK_SRC configuration
instructions, which can be used to configure/query what source the board uses to synchronize its master clock to. The various
possibilities are defined in the comedi.h header file:

Clock Source Description
NI_MIO_INTERNAL_CLOCK Use the board’s internal oscillator.

NI_MIO_RTSI_CLOCK
Use the RTSI line 7 as the master clock. This source is only
supported on pre-m-series boards. The newer m-series
boards use NI_MIO_PLL_RTSI_CLOCK() instead.

NI_MIO_PLL_PXI_STAR_TRIGGER_CLOCK
Only available for newer m-series PXI boards.
Synchronizes the board’s phased-locked loop (which runs
at 80MHz) to the PXI star trigger line.

NI_MIO_PLL_PXI10_CLOCK
Only available for newer m-series PXI boards.
Synchronizes the board’s phased-locked loop (which runs
at 80MHz) to the 10 MHz PXI backplane clock.

NI_MIO_PLL_RTSI_CLOCK(n)

Only available for newer m-series boards. The function
returns a clock source which will cause the board’s
phased-locked loop (which runs at 80MHz) to syncronize
to the RTSI line specified in the function argument.

Comedi 31 / 161

For all clock sources except NI_MIO_INTERNAL_CLOCK and NI_MIO_PLL_PXI10_CLOCK, you should pass the period of
the clock your are feeding to the board when using INSN_CONFIG_SET_CLOCK_SRC.

Finally, the configuration instructions INSN_CONFIG_SET_ROUTING and INSN_CONFIG_GET_ROUTING can be used to
select/query which internal signal will appear on a given RTSI output line. The header file comedi.h defines the following
signal sources which can be routed to an RTSI line:

Signal Source Description

NI_RTSI_OUTPUT_ADR_START1
ADR_START1, an analog input start signal. See the NI’s
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_ADR_START2
ADR_START2, an analog input stop signal. See the NI’s
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_SCLKG
SCLKG, a sample clock signal. See the NI’s DAQ-STC
Technical Reference Manual for more information.

NI_RTSI_OUTPUT_DACUPDN
DACUPDN, a dac update signal. See the NI’s DAQ-STC
Technical Reference Manual for more information.

NI_RTSI_OUTPUT_DA_START1
DA_START1, an analog output start signal. See the NI’s
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_G_SRC0
G_SRC0, the source signal to general purpose counter 0.
See the NI’s DAQ-STC Technical Reference Manual for
more information.

NI_RTSI_OUTPUT_G_GATE0
G_GATE0, the gate signal to general purpose counter 0.
See the NI’s DAQ-STC Technical Reference Manual for
more information.

NI_RTSI_OUTPUT_RGOUT0
RGOUT0, the output signal of general purpose counter 0.
See the NI’s DAQ-STC Technical Reference Manual for
more information.

NI_RTSI_OUTPUT_RTSI_BRD(n)

RTSI_BRD0 though RTSI_BRD3 are four internal signals
which can have various other signals routed to them in turn.
Currently, comedi provides no way to configure the signals
routed to the RTSI_BRD lines. See the NI’s DAQ-STC
Technical Reference Manual for more information.

NI_RTSI_OUTPUT_RTSI_OSC

The RTSI clock signal. On pre-m-series boards, this signal
is always routed to RTSI line 7, and cannot be routed to
lines 0 through 6. On m-series boards, any RTSI line can
be configured to output the clock signal.

The RTSI bus pins may be used as trigger inputs for many of the Comedi trigger functions. To use the RTSI bus pins, set the
source to be TRIG_EXT and the source argument using the return values from the NI_EXT_RTSI(n) function (or similarly the
NI_EXT_PFI(n) function if you want to trigger from a PFI line). The CR_EDGE and CR_INVERT flags may also be set on the
trigger source argument to specify edge and falling edge/low level triggering.

An example to set up a device as a master is given below.

void comediEnableMaster(comedi_t *dev){
comedi_insn configCmd;
lsampl_t configData[2];
int ret;
unsigned int d = 0;
static const unsigned rtsi_subdev = 10;
static const unsigned rtsi_clock_line = 7;

/* Route RTSI clock to line 7 (not needed on pre-m-series boards since their
clock is always on line 7). */

memset(&configCmd, 0, sizeof(configCmd));
memset(&configData, 0, sizeof(configData));

http://www.comedi.org

Comedi 32 / 161

configCmd.insn = INSN_CONFIG;
configCmd.subdev = rtsi_subdev;
configCmd.chanspec = rtsi_clock_line;
configCmd.n = 2;
configCmd.data = configData;
configCmd.data[0] = INSN_CONFIG_SET_ROUTING;
configCmd.data[1] = NI_RTSI_OUTPUT_RTSI_OSC;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){

comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);

}
// Set clock RTSI line as output
ret = comedi_dio_config(dev, rtsi_subdev, rtsi_clock_line, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}

/* Set routing of the 3 main AI RTSI signals and their direction to output.
We’re reusing the already initialized configCmd instruction here since
it’s mostly the same. */

configCmd.chanspec = 0;
configCmd.data[1] = NI_RTSI_OUTPUT_ADR_START1;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){

comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);

}
ret = comedi_dio_config(dev, rtsi_subdev, 0, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}

configCmd.chanspec = 1;
configCmd.data[1] = NI_RTSI_OUTPUT_ADR_START2;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){

comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);

}
ret = comedi_dio_config(dev, rtsi_subdev, 1, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}

configCmd.chanspec = 2;
configCmd.data[1] = NI_RTSI_OUTPUT_SCLKG;
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){

comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);

}
ret = comedi_dio_config(dev, rtsi_subdev, 2, INSN_CONFIG_DIO_OUTPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}
}

Comedi 33 / 161

An example to slave a m-series device from this master follows. A pre-m-series device would need to use NI_MIO_RTSI_CL
OCK for the clock source instead. In your code, you may also wish to configure the master device to use the external clock source
instead of using its internal clock directly (for best syncronization).

void comediEnableSlave(comedi_t *dev){
comedi_insn configCmd;
lsampl_t configData[3];
int ret;
unsigned int d = 0;;
static const unsigned rtsi_subdev = 10;
static const unsigned rtsi_clock_line = 7;

memset(&configCmd, 0, sizeof(configCmd));
memset(&configData, 0, sizeof(configData));
configCmd.insn = INSN_CONFIG;
configCmd.subdev = rtsi_subdev;
configCmd.chanspec = 0;
configCmd.n = 3;
configCmd.data = configData;
configCmd.data[0] = INSN_CONFIG_SET_CLOCK_SRC;
configCmd.data[1] = NI_MIO_PLL_RTSI_CLOCK(rtsi_clock_line);
configCmd.data[2] = 100; /* need to give it correct external clock period */
ret = comedi_do_insn(dev, &configCmd);
if(ret < 0){

comedi_perror("comedi_do_insn: INSN_CONFIG");
exit(1);

}
/* configure RTSI clock line as input */
ret = comedi_dio_config(dev, rtsi_subdev, rtsi_clock_line, INSN_CONFIG_DIO_INPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}
/* Configure RTSI lines we are using for AI signals as inputs. */
ret = comedi_dio_config(dev, rtsi_subdev, 0, INSN_CONFIG_DIO_INPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}
ret = comedi_dio_config(dev, rtsi_subdev, 1, INSN_CONFIG_DIO_INPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}
ret = comedi_dio_config(dev, rtsi_subdev, 2, INSN_CONFIG_DIO_INPUT);
if(ret < 0){

comedi_perror("comedi_dio_config");
exit(1);

}
}

int comediSlaveStart(comedi_t *dev){
comedi_cmd cmd;
unsigned int nChannels = 8;
double sampleRate = 50000;
unsigned int chanList[8];
int i;

// Setup chan list
for(i = 0; i < nChannels; i++){

chanList[i] = CR_PACK(i, 0, AREF_GROUND);
}

Comedi 34 / 161

// Set up command
memset(&cmd, 0, sizeof(cmd));
ret = comedi_get_cmd_generic_timed(dev, subdevice, &cmd,

(int)(1e9/(nChannels * sampleRate)));
if(ret<0){

printf("comedi_get_cmd_generic_timed failed\n");
return ret;

}
cmd.chanlist = chanList;
cmd.chanlist_len = nChannels;
cmd.scan_end_arg = nChannels;
cmd.start_src = TRIG_EXT;
cmd.start_arg = CR_EDGE | NI_EXT_RTSI(0);
cmd.convert_src = TRIG_EXT;
cmd.convert_arg = CR_INVERT | CR_EDGE | NI_EXT_RTSI(2);
cmd.stop_src = TRIG_NONE;

ret = comedi_command(dev0, &cmd0);
if(ret<0){

printf("comedi_command failed\n");
return ret;

}
return 0;

}

5 Comedi reference

5.1 Headerfiles: comedi.h and comedilib.h

All application programs must include the header file comedilib.h. (This file itself includes comedi.h.) They contain the
full interface of Comedi: defines, function prototypes, data structures.

The following Sections give more details.

5.2 Constants and macros

5.2.1 CR_PACK

CR_PACK(chan, rng, aref) is used to initialize the elements of the chanlist array in the comedi_cmd data structure, and the
chanspec member of the comedi_insn structure.

#define CR_PACK(chan,rng,aref) ((((aref)&0x3)<<24) | (((rng)&0xff)<<16) | (chan))

The chan argument is the channel you wish to use, with the channel numbering starting at zero.

The range rng is an index, starting at zero, whose meaning is device dependent. The comedi_get_n_ranges() and comed
i_get_range() functions are useful in discovering information about the available ranges.

The aref argument indicates what reference you want the device to use. It can be any of the following:

AREF_GROUND is for inputs/outputs referenced to ground.

AREF_COMMON is for a “common” reference (the low inputs of all the channels are tied together, but are isolated from ground).

AREF_DIFF is for differential inputs/outputs.

AREF_OTHER is for any reference that does not fit into the above categories.

Particular drivers may or may not use the AREF flags. If they are not supported, they are silently ignored.

http://www.comedi.org
http://www.comedi.org

Comedi 35 / 161

5.2.2 CR_PACK_FLAGS

CR_PACK_FLAGS(chan, range, aref, flags) is similar to CR_PACK() but can be used to combine one or more flag bits
(bitwise-ORed together in the flags parameter) with the other parameters.

#define CR_PACK_FLAGS(chan, range, aref, flags) \
(CR_PACK(chan, range, aref) | ((flags) & CR_FLAGS_MASK))

Depending on context, the chan parameter might not be a channel; it could be a trigger source, clock source, gate source etc.
(in which case, the range and aref parameters would probably be set to 0), and the flags would modify the source in some
device-dependant way.

The following flag values are defined:

CR_ALT_FILTER, CR_DITHER, CR_DEGLITCH (all the same) specify that some sort of filtering is to be done on the channel,
trigger source, etc.

CR_ALT_SOURCE specifies that some alternate source is to be used for the channel (usually a calibration source).

CR_EDGE is usually combined with a trigger source number to specify that the trigger source is edge-triggered if the hardware
and driver supports both edge-triggering and level-triggering. If both are supported, not asserting this flag specifies level-
triggering.

CR_INVERT specifies that the trigger source, gate source, etc. is to be inverted.

5.2.3 RANGE_LENGTH (deprecated)

Rangetype values are library-internal tokens that represent an array of range information structures. These numbers are primarily
used for communication between the kernel and library.

The RANGE_LENGTH(rangetype) macro returns the length of the array that is specified by the rangetype token.

The RANGE_LENGTH() macro is deprecated, and should not be used in new applications. It is scheduled to be removed from the
header file at version 1.0. Binary compatibility may be broken for version 1.1.

5.2.4 enum comedi_conversion_direction

enum comedi_conversion_direction
{

COMEDI_TO_PHYSICAL,
COMEDI_FROM_PHYSICAL

};

A comedi_conversion_direction is used to choose between converting data from Comedi’s integer sample values to a physical
value (COMEDI_TO_PHYSICAL), and converting from a physical value to Comedi’s integer sample values (COMEDI_FROM_
PHYSICAL).

5.2.5 enum comedi_io_direction

enum comedi_io_direction
{

COMEDI_INPUT,
COMEDI_OUTPUT

};

A comedi_io_direction is used to select between input or output. For example, comedi_dio_config() uses the COMEDI_
INPUT and COMEDI_OUTPUT values to specify whether a configurable digital i/o channel should be configured as an input or
output.

Comedi 36 / 161

5.2.6 enum comedi_subdevice_type

enum comedi_subdevice_type {
COMEDI_SUBD_UNUSED, /* subdevice is unused by driver */
COMEDI_SUBD_AI, /* analog input */
COMEDI_SUBD_AO, /* analog output */
COMEDI_SUBD_DI, /* digital input */
COMEDI_SUBD_DO, /* digital output */
COMEDI_SUBD_DIO, /* digital input/output */
COMEDI_SUBD_COUNTER, /* counter */
COMEDI_SUBD_TIMER, /* timer */
COMEDI_SUBD_MEMORY, /* memory, EEPROM, DPRAM */
COMEDI_SUBD_CALIB, /* calibration DACs and pots*/
COMEDI_SUBD_PROC, /* processor, DSP */
COMEDI_SUBD_SERIAL, /* serial IO */
COMEDI_SUBD_PWM /* pulse width modulation */

};

The comedi_subdevice_type enumeration specifies the possible values for a subdevice type. These values are used by the func-
tions comedi_get_subdevice_type() and comedi_find_subdevice_by_type().

5.3 Data types and structures

This Section explains the data structures that users of the Comedi API are confronted with:

typedef struct comedi_devinfo_struct comedi_devinfo;
typedef struct comedi_t_struct comedi_t;
typedef struct sampl_t_struct sampl_t;
typedef struct lsampl_t_struct lsampl_t;
typedef struct comedi_sv_t_struct comedi_sv_t;
typedef struct comedi_cmd_struct comedi_cmd;
typedef struct comedi_insn_struct comedi_insn;
typedef struct comedi_range_struct comedi_range;
typedef struct comedi_krange_struct comedi_krange;
typedef struct comedi_insnlist_struct comedi_insnlist;

The data structures used in the implementation of the Comedi drivers are described in Section 6.2.1.

5.3.1 comedi_devinfo

The data type comedi_devinfo is used to store information about a device. This structure is usually filled in automatically when
the driver is loaded (“attached”), so programmers need not access this data structure directly.

typedef struct comedi_devinfo_struct comedi_devinfo;

struct comedi_devinfo_struct{
unsigned int version_code; // version number of the Comedi code
unsigned int n_subdevs; // number of subdevices on this device
char driver_name[COMEDI_NAMELEN];
char board_name[COMEDI_NAMELEN];
int read_subdevice; // index of subdevice whose buffer is read by read(), etc. ←↩

on file descriptor from comedi_fileno() (negative means none)
int write_subdevice; // index of subdevice whose buffer is written by write(), ←↩

etc. on file descriptor from comedi_fileno() (negatove means none).
int unused[30];

};

http://www.comedi.org
http://www.comedi.org

Comedi 37 / 161

5.3.2 comedi_t

The data type comedi_t is used to represent an open Comedi device:

typedef struct comedi_t_struct comedi_t;

A valid comedi_t pointer is returned by a successful call to comedi_open(), and should be used for subsequent access to the
device. It is an opaque type, and pointers to type comedi_t should not be dereferenced by the application.

5.3.3 sampl_t

typedef unsigned short sampl_t;

The data type sampl_t is one of the generic types used to represent data values in Comedilib. It is used in a few places where a
data type shorter than lsampl_t is useful. On most architectures it is a 16-bit, unsigned integer.

Most drivers represent data transferred by read() and write() functions using sampl_t. Applications should check the subde-
vice flag SDF_LSAMPL to determine if the subdevice uses sampl_t or lsampl_t.

5.3.4 lsampl_t

typedef unsigned int lsampl_t;

The data type lsampl_t is the data type typically used to represent data values in Comedilib. On most architectures it is a 32-bit,
unsigned integer.

5.3.5 comedi_trig (deprecated)

typedef struct comedi_trig_struct comedi_trig;

struct comedi_trig_struct{
unsigned int subdev; /* subdevice */
unsigned int mode; /* mode */
unsigned int flags;
unsigned int n_chan; /* number of channels */
unsigned int *chanlist; /* channel/range list */
sampl_t *data; /* data list, size depends on subd flags */
unsigned int n; /* number of scans */
unsigned int trigsrc;
unsigned int trigvar;
unsigned int trigvar1;
unsigned int data_len;
unsigned int unused[3];

};

The comedi_trig structure is a control structure used by the COMEDI_TRIG ioctl, an older method of communicating instructions
to the driver and hardware. Use of comedi_trig is deprecated, and is no longer implemented by the Comedi kernel layer.

5.3.6 comedi_sv_t (deprecated)

typedef struct comedi_sv_struct comedi_sv_t;

struct comedi_sv_struct{
comedi_t *dev;
unsigned int subdevice;
unsigned int chan;

http://www.comedi.org
http://www.comedi.org

Comedi 38 / 161

/* range policy */
int range;
int aref;

/* number of measurements to average (for ai) */
int n;

lsampl_t maxdata;
};

The comedi_sv_t structure is used by the comedi_sv_...() functions to provide a simple method of accurately measuring
slowly varying inputs. This relies on the COMEDI_TRIG ioctl and is no longer by the Comedi kernel layer.

5.3.7 comedi_cmd

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct{
unsigned int subdev;
unsigned int flags;

unsigned int start_src;
unsigned int start_arg;

unsigned int scan_begin_src;
unsigned int scan_begin_arg;

unsigned int convert_src;
unsigned int convert_arg;

unsigned int scan_end_src;
unsigned int scan_end_arg;

unsigned int stop_src;
unsigned int stop_arg;

unsigned int *chanlist;
unsigned int chanlist_len;

sampl_t *data;
unsigned int data_len;

};

More information on using commands can be found in the command section.

5.3.8 comedi_insn

typedef struct comedi_insn_struct comedi_insn;

struct comedi_insn_struct{
unsigned int insn;
unsigned int n;
lsampl_t*data;
unsigned int subdev;
unsigned int chanspec;
unsigned int unused[3];

};

http://www.comedi.org

Comedi 39 / 161

Comedi instructions are described by the comedi_insn structure. Applications send instructions to the driver in order to perform
control and measurement operations that are done immediately or synchronously, i.e., the operations complete before program
control returns to the application. In particular, instructions cannot describe acquisition that involves timers or external events.

The field insn determines the type of instruction that is sent to the driver. Valid instruction types are:

INSN_READ read values from an input channel

INSN_WRITE write values to an output channel

INSN_BITS read/write values on multiple digital I/O channels

INSN_CONFIG configure a subdevice

INSN_GTOD read a timestamp, identical to gettimeofday() except the seconds and microseconds values are unsigned
values of type lsampl_t.

INSN_WAIT wait a specified number of nanoseconds

The number of samples to read or write, or the size of the configuration structure is specified by the field n, and the buffer for
those samples by data. The field subdev is the subdevice index that the instruction is sent to. The field chanspec specifies the
channel, range, and analog reference (if applicable).

Instructions can be sent to drivers using comedi_do_insn(). Multiple instructions can be sent to drivers in the same system
call using comedi_do_insnlist().

5.3.9 comedi_range

typedef struct comedi_range_struct comedi_range;

struct comedi_range_struct{
double min;
double max;
unsigned int unit;

}comedi_range;

The comedi_range structure conveys part of the information necessary to translate sample values to physical units, in particular,
the endpoints of the range and the physical unit type. The physical unit type is specified by the field unit, which may take the
values UNIT_volt for volts, UNIT_mA for milliamps, or UNIT_none for unitless. The endpoints are specified by the fields
min and max.

5.3.10 comedi_krange

typedef struct comedi_krange_struct comedi_krange;

struct comedi_krange_struct{
int min;
int max;
unsigned int flags;

};

The comedi_krange structure is used to transfer range information between the driver and Comedilib, and should not normally
be used by applications. The structure conveys the same information as the comedi_range structure, except the fields min and
max are integers, multiplied by a factor of 1000000 compared to the counterparts in comedi_range.

In addition, kcomedilib uses the comedi_krange structure in place of the comedi_range structure.

Comedi 40 / 161

5.3.11 comedi_insnlist

typedef struct comedi_insnlist_struct comedi_insnlist;

struct comedi_insnlist_struct{
unsigned int n_insns;
comedi_insn *insns;

};

A comedi_insnlist structure is used to communicate a list of instructions to the driver using the comedi_do_insnlist()
function.

5.3.12 comedi_polynomial_t

#define COMEDI_MAX_NUM_POLYNOMIAL_COEFFICIENTS 4
typedef struct {

double coefficients[COMEDI_MAX_NUM_POLYNOMIAL_COEFFICIENTS];
double expansion_origin;
unsigned order;

} comedi_polynomial_t;

A comedi_polynomial_t holds calibration data for a channel of a subdevice. It is initialized by the comedi_get_hardcal
_converter() or comedi_get_softcal_converter() calibration functions and is passed to the comedi_to_physi
cal() and comedi_from_physical() raw/physical conversion functions.

5.4 Functions

5.4.1 Core Functions

5.4.1.1 comedi_close

comedi_close — close a Comedi device

Synopsis

#include <comedilib.h>

int comedi_close(comedi * device);

Description

Close a device previously opened by comedi_open().

Return value

If successful, comedi_close() returns 0. On failure, -1 is returned.

5.4.1.2 comedi_data_read

comedi_data_read — read single sample from channel

Comedi 41 / 161

Synopsis

#include <comedilib.h>

int comedi_data_read(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
lsampl_t * data);

Description

Reads a single sample on the channel specified by the Comedi device device, the subdevice subdevice, and the channel
channel. For the A/D conversion (if appropriate), the device is configured to use range specification range and (if appropriate)
analog reference type aref. Analog reference types that are not supported by the device are silently ignored.

The function comedi_data_read() reads one data value from the specified channel and stores the value in *data.

WARNING: comedi_data_read() does not do any pausing to allow multiplexed analog inputs to settle before starting an
analog to digital conversion. If you are switching between different channels and need to allow your analog input to settle for an
accurate reading, use comedi_data_read_delayed(), or set the input channel at an earlier time with comedi_data_re
ad_hint().

Data values returned by this function are unsigned integers less than or equal to the maximum sample value of the channel, which
can be determined using the function comedi_get_maxdata(). Conversion of data values to physical units can be performed
by the functions comedi_to_phys() (linear conversion) or comedi_to_physical() (non-linear polynomial conversion).

Return value

On success, comedi_data_read() returns 1 (the number of samples read). If there is an error, -1 is returned.

5.4.1.3 comedi_data_read_n

comedi_data_read_n — read multiple samples from channel

Synopsis

#include <comedilib.h>

int comedi_data_read_n(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
lsampl_t * data, unsigned int n);

Description

Similar to comedi_data_read() except it reads n samples into the array data. The precise timing of the samples is not
hardware controlled.

5.4.1.4 comedi_data_read_delayed

comedi_data_read_delayed — read single sample from channel after delaying for specified settling time

Synopsis

#include <comedilib.h>

int comedi_data_read_delayed(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned
int aref, lsampl_t * data, unsigned int nanosec);

Comedi 42 / 161

Description

Similar to comedi_data_read() except it will wait for the specified number of nanoseconds between setting the input channel
and taking a sample. For analog inputs, most boards have a single analog to digital converter which is multiplexed to be able to
read multiple channels. If the input is not allowed to settle after the multiplexer switches channels, the reading will be inaccurate.
This function is useful for allowing a multiplexed analog input to settle when switching channels.

Although the settling time is specified in nanoseconds, the actual settling time will be rounded up to the nearest microsecond.

5.4.1.5 comedi_data_read_hint

comedi_data_read_hint — tell driver which channel/range/aref you are going to read from next

Synopsis

#include <comedilib.h>

int comedi_data_read_hint(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int
aref);

Description

Used to prepare an analog input for a subsequent call to comedi_data_read(). It is not necessary to use this function, but it
can be useful for eliminating inaccuracies caused by insufficient settling times when switching the channel or gain on an analog
input. This function sets an analog input to the channel, range, and aref specified but does not perform an actual analog to digital
conversion.

Alternatively, one can simply use comedi_data_read_delayed(), which sets up the input, pauses to allow settling, then
performs a conversion.

5.4.1.6 comedi_data_write

comedi_data_write — write single sample to channel

Synopsis

#include <comedilib.h>

int comedi_data_write(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
lsampl_t data);

Description

Writes a single sample on the channel that is specified by the Comedi device device, the subdevice subdevice, and the channel
channel. If appropriate, the device is configured to use range specification range and analog reference type aref. Analog
reference types that are not supported by the device are silently ignored.

The function comedi_data_write() writes the data value specified by the parameter data to the specified channel.

Return value

On success, comedi_data_write() returns 1 (the number of samples written). If there is an error, -1 is returned.

Comedi 43 / 161

5.4.1.7 comedi_do_insn

comedi_do_insn — perform instruction

Synopsis

#include <comedilib.h>

int comedi_do_insn(comedi_t * device, comedi_insn * instruction);

Description

The function comedi_do_insn() performs a single instruction.

Return value

If successful, returns a non-negative number. For the case of INSN_READ or INSN_WRITE instructions, comedi_do_insn()
returns the number of samples read or written, which may be less than the number requested. If there is an error, -1 is returned.

5.4.1.8 comedi_do_insnlist

comedi_do_insnlist — perform multiple instructions

Synopsis

#include <comedilib.h>

int comedi_do_insnlist(comedi_t * device, comedi_insnlist * list);

Description

The function comedi_do_insnlist() performs multiple Comedi instructions as part of one system call. This function can
be used to avoid the overhead of multiple system calls.

Return value

The function comedi_do_insnlist() returns the number of successfully completed instructions. Error information for the
unsuccessful instruction is not available. If there is an error before the first instruction can be executed, -1 is returned.

5.4.1.9 comedi_fileno

comedi_fileno — get file descriptor for open Comedilib device

Synopsis

#include <comedilib.h>

int comedi_fileno(comedi_t * device);

Comedi 44 / 161

Description

The function comedi_fileno() returns the file descriptor for the device device. This descriptor can then be used as the file
descriptor parameter of read(), write(), etc. This function is intended to mimic the standard C library function fileno().

The returned file descriptor should not be closed, and will become invalid when comedi_close() is called on device.

Return value

A file descriptor, or -1 on error.

5.4.1.10 comedi_find_range

comedi_find_range — search for range

Synopsis

#include <comedilib.h>

int comedi_find_range(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int unit, double min, double
max);

Description

The function comedi_find_range() tries to locate the optimal (smallest) range for the channel channel belonging to sub-
device subdevice of the comedi device device, that includes both min and max in units of unit.

Return value

If a matching range is found, the index of the matching range is returned. If no matching range is available, the function returns
-1.

5.4.1.11 comedi_find_subdevice_by_type

comedi_find_subdevice_by_type — search for subdevice type

Synopsis

#include <comedilib.h>

int comedi_find_subdevice_by_type(comedi_t * device, int type, unsigned int start_subdevice);

Description

The function comedi_find_subdevice_by_type() tries to locate a subdevice belonging to comedi device device, hav-
ing type type, starting with the subdevice start_subdevice. The comedi_subdevice_type enum specifies the possible subde-
vice types.

Return value

If it finds a subdevice with the requested type, it returns its index. If there is an error, the function returns -1 and sets the
appropriate error.

Comedi 45 / 161

5.4.1.12 comedi_from_phys

comedi_from_phys — convert physical units to sample

Synopsis

#include <comedilib.h>

lsampl_t comedi_from_phys(double data, comedi_range * range, lsampl_t maxdata);

Description

Converts parameter data given in physical units (double) into sample values (lsampl_t, between 0 and maxdata). The parameter
range represents the conversion information to use, and the parameter maxdata represents the maximum possible data value
for the channel that the data will be written to. The mapping between physical units and raw data is linear and assumes that the
converter has ideal characteristics.

Conversion is not affected by out-of-range behavior. Out-of-range data parameters are silently truncated to the range 0 to
maxdata.

5.4.1.13 comedi_from_physical

comedi_from_physical — convert physical units to sample using calibration data

Synopsis

#include <comedilib.h>

lsampl_t comedi_from_physical(double data, const comedi_polynomial_t * conversion_polynomial);

Description

Converts data given in physical units into Comedi’s integer sample values (lsampl_t, between 0 and maxdata — see comed
i_get_maxdata()). The conversion_polynomial parameter is obtained from either comedi_get_hardcal_conve
rter() or comedi_get_softcal_converter(). The allows non linear and board specific correction. The result will be
rounded using the C library’s current rounding direction. No range checking of the input data is performed. It is up to you to
ensure your data is within the limits of the output range you are using.

Return value

Comedi sample value corresponding to input physical value.

5.4.1.14 comedi_get_board_name

comedi_get_board_name — Comedi device name

Synopsis

#include <comedilib.h>

const char * comedi_get_board_name(comedi_t * device);

Comedi 46 / 161

Description

The function comedi_get_board_name() returns a pointer to a string containing the name of the comedi device represented
by device. This pointer is valid until the device is closed. This function returns NULL if there is an error.

5.4.1.15 comedi_get_driver_name

comedi_get_driver_name — Comedi driver name

Synopsis

#include <comedilib.h>

char * comedi_get_driver_name(comedi_t * device);

Description

The function comedi_get_driver_name() returns a pointer to a string containing the name of the driver being used by
comedi for the comedi device represented by device. This pointer is valid until the device is closed. This function returns NULL
if there is an error.

5.4.1.16 comedi_get_maxdata

comedi_get_maxdata — maximum sample of channel

Synopsis

#include <comedilib.h>

lsampl_t comedi_get_maxdata(comedi_t * device, unsigned int subdevice, unsigned int channel);

Description

The function comedi_get_maxdata() returns the maximum valid data value for channel channel of subdevice subdevice
belonging to the comedi device device.

Return value

The maximum valid sample value, or 0 on error.

5.4.1.17 comedi_get_n_channels

comedi_get_n_channels — number of subdevice channels

Synopsis

#include <comedilib.h>

int comedi_get_n_channels(comedi_t * device, unsigned int subdevice);

Comedi 47 / 161

Description

The function comedi_get_n_channels() returns the number of channels of the subdevice subdevice belonging to the
comedi device device. This function returns -1 on error and the Comedilib error value is set.

5.4.1.18 comedi_get_n_ranges

comedi_get_n_ranges — number of ranges of channel

Synopsis

#include <comedilib.h>

int comedi_get_n_ranges(comedi_t * device, unsigned int subdevice, unsigned int channel);

Description

The function comedi_get_n_ranges() returns the number of ranges of the channel channel belonging to the subdevice
subdevice of the comedi device device. This function returns -1 on error.

5.4.1.19 comedi_get_n_subdevices

comedi_get_n_subdevices — number of subdevices

Synopsis

#include <comedilib.h>

int comedi_get_n_subdevices(comedi_t * device);

Description

The function comedi_get_n_subdevices() returns the number of subdevices belonging to the Comedi device referenced
by the parameter device, or -1 on error.

5.4.1.20 comedi_get_range

comedi_get_range — range information of channel

Synopsis

#include <comedilib.h>

comedi_range * comedi_get_range(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range);

Description

The function comedi_get_range() returns a pointer to a comedi_range structure that contains information on the range
specified by the subdevice, channel, and range parameters. The pointer is valid until the Comedi device device is closed.
If there is an error, NULL is returned.

Comedi 48 / 161

5.4.1.21 comedi_get_subdevice_flags

comedi_get_subdevice_flags — properties of subdevice

Synopsis

#include <comedilib.h>

int comedi_get_subdevice_flags(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_subdevice_flags() returns a bitfield describing the capabilities of the specified subdevice
subdevice of the Comedi device device. If there is an error, -1 is returned, and the Comedilib error value is set.

Subdevice Flag Value (hex) Description

SDF_BUSY 0x00000001

The subdevice is busy performing an
asynchronous command. A subdevice
being “busy” is slightly different from
the “running” state flagged by
SDF_RUNNING. A “running”
subdevice is always “busy”, but a
“busy” subdevice is not necessarily
“running”. For example, suppose an
analog input command has been
completed by the hardware, but there
are still samples in Comedi’s buffer
waiting to be read out. In this case, the
subdevice is not “running”, but is still
“busy” until all the samples are read
out or comedi_cancel() is called.

SDF_BUSY_OWNER 0x00000002
The subdevice is “busy”, and the
command it is running was started by
the current process.

SDF_LOCKED 0x00000004
The subdevice has been locked by
comedi_lock().

SDF_LOCK_OWNER 0x00000008
The subdevice is locked, and was
locked by the current process.

SDF_MAXDATA 0x00000010
The maximum data value for the
subdevice depends on the channel.

SDF_FLAGS 0x00000020
The subdevice flags depend on the
channel (unfinished/broken support in
library).

SDF_RANGETYPE 0x00000040
The range type depends on the
channel.

SDF_CMD 0x00001000
The subdevice supports asynchronous
commands.

SDF_SOFT_CALIBRATED 0x00002000

The subdevice relies on the host to do
calibration in software. Software
calibration coefficients are determined
by the comedi_soft_calibrate utility.
See the description of the comedi_g
et_softcal_converter()
function for more information.

SDF_READABLE 0x00010000
The subdevice can be read (e.g.
analog input).

Comedi 49 / 161

Subdevice Flag Value (hex) Description

SDF_WRITABLE 0x00020000
The subdevice can be written to (e.g.
analog output).

SDF_INTERNAL 0x00040000
The subdevice does not have
externally visible lines.

SDF_GROUND 0x00100000
The subdevice supports analog
reference AREF_GROUND.

SDF_COMMON 0x00200000
The subdevice supports analog
reference AREF_COMMON.

SDF_DIFF 0x00400000
The subdevice supports analog
reference AREF_DIFF.

SDF_OTHER 0x00800000
The subdevice supports analog
reference AREF_OTHER

SDF_DITHER 0x01000000
The subdevice supports dithering (via
the CR_ALT_FILTER chanspec flag).

SDF_DEGLITCH 0x02000000
The subdevice supports deglitching
(via the CR_ALT_FILTER chanspec
flag).

SDF_RUNNING 0x08000000

An asynchronous command is
running. You can use this flag to poll
for the completion of an output
command.

SDF_LSAMPL 0x10000000
The subdevice uses the 32-bit lsampl_t
type instead of the 16-bit sampl_t for
asynchronous command data.

SDF_PACKED 0x20000000

The subdevice uses bitfield samples
for asynchronous command data, one
bit per channel (otherwise it uses one
sampl_t or lsampl_t per channel).
Commonly used for digital
subdevices.

5.4.1.22 comedi_get_subdevice_type

comedi_get_subdevice_type — type of subdevice

Synopsis

#include <comedilib.h>

int comedi_get_subdevice_type(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_subdevice_type() returns an integer describing the type of subdevice that belongs to the
comedi device device and has the subdevice index subdevice. The comedi_subdevice_type enum specifies the possible
values for the subdevice type.

Return value

The function returns the subdevice type, or -1 if there is an error.

5.4.1.23 comedi_get_version_code

comedi_get_version_code — Comedi version code

Comedi 50 / 161

Synopsis

#include <comedilib.h>

int comedi_get_version_code(comedi_t * device);

Description

Returns the Comedi kernel module version code. A valid Comedi device referenced by the parameter device is necessary to
communicate with the kernel module. On error, -1 is returned.

The version code is encoded as a bitfield of three 8-bit numbers. For example, 0x00073d is the version code for version 0.7.61.

This function is of limited usefulness. A typical mis-application of this function is to use it to determine if a certain feature is
supported. If the application needs to know of the existence of a particular feature, an existence test function should be written
and put in the Comedilib source.

5.4.1.24 comedi_internal_trigger

comedi_internal_trigger — generate soft trigger

Synopsis

#include <comedilib.h>

int comedi_internal_trigger(comedi_t * device, unsigned int subdevice, unsigned int trig_num);

Description

This function sends an INSN_INTTRIG instruction to a subdevice, which causes an internal triggering event. This event can,
for example, trigger a subdevice to start an asynchronous command.

The trig_num parameter is reserved for future use, and should be set to 0. It is likely it will be used in the future to support
multiple independent internal triggers. For example, an asynchronous command might be specified for a subdevice with a start
_src of TRIG_INT, and a start_arg of 5. Then the start event would only be triggered if comedi_internal_trigger()
were called on the subdevice with a trig_num equal to the same value of 5.

Return value

0 on success, -1 on error.

5.4.1.25 comedi_lock

comedi_lock — subdevice reservation

Synopsis

#include <comedilib.h>

int comedi_lock(comedi_t * device, unsigned int subdevice);

Description

The function comedi_lock() reserves a subdevice for use by the current process. While the lock is held, no other process is
allowed to read, write, or configure that subdevice, although other processes can read information about the subdevice. The lock
is released by comedi_unlock(), or when comedi_close() is called on device.

Comedi 51 / 161

Return value

If successful, 0 is returned. If there is an error, -1 is returned.

5.4.1.26 comedi_maxdata_is_chan_specific

comedi_maxdata_is_chan_specific — maximum sample depends on channel

Synopsis

#include <comedilib.h>

int comedi_maxdata_is_chan_specific(comedi_t * device, unsigned int subdevice);

Description

If each channel of the specified subdevice may have different maximum sample values, this function returns 1. Otherwise, this
function returns 0. On error, this function returns -1.

5.4.1.27 comedi_open

comedi_open — open a Comedi device

Synopsis

#include <comedilib.h>

comedi_t * comedi_open(const char * filename);

Description

Open a Comedi device specified by the file filename.

Return value

If successful, comedi_open() returns a pointer to a valid comedi_t structure. This structure is opaque; the pointer should not
be dereferenced by the application. NULL is returned on failure.

5.4.1.28 comedi_range_is_chan_specific

comedi_range_is_chan_specific — range information depends on channel

Synopsis

#include <comedilib.h>

int comedi_range_is_chan_specific(comedi_t * device, unsigned int subdevice);

Description

If each channel of the specified subdevice may have different range information, this function returns 1. Otherwise, this function
returns 0. On error, this function returns -1.

Comedi 52 / 161

5.4.1.29 comedi_set_global_oor_behavior

comedi_set_global_oor_behavior — out-of-range behavior

Synopsis

#include <comedilib.h>

enum comedi_oor_behavior comedi_set_global_oor_behavior(enum comedi_oor_behavior behavior);

Description

This function changes the Comedilib out-of-range behavior. This currently affects the behavior of comedi_to_phys() when
converting endpoint sample values, that is, sample values equal to 0 or maxdata. If the out-of-range behavior is set to COMEDI
_OOR_NAN, endpoint values are converted to NAN. If the out-of-range behavior is set to COMEDI_OOR_NUMBER, the endpoint
values are converted similarly to other values.

Return value

The previous out-of-range behavior is returned.

5.4.1.30 comedi_to_phys

comedi_to_phys — convert sample to physical units

Synopsis

#include <comedilib.h>

double comedi_to_phys(lsampl_t data, comedi_range * range, lsampl_t maxdata);

Description

Converts parameter data given in sample values (lsampl_t, between 0 and maxdata) into physical units (double). The parameter
range represents the conversion information to use, and the parameter maxdata represents the maximum possible data value
for the channel that the data was read. The mapping between physical units is linear and assumes ideal converter characteristics.

Conversion of endpoint sample values, that is, sample values equal to 0 or maxdata, is affected by the Comedilib out-of-range
behavior (see function comedi_set_global_oor_behavior()). If the out-of-range behavior is set to COMEDI_OOR_
NAN, endpoint values are converted to NAN. If the out-of-range behavior is set to COMEDI_OOR_NUMBER, the endpoint values
are converted similarly to other values.

If there is an error, NAN is returned.

5.4.1.31 comedi_to_physical

comedi_to_physical — convert sample to physical units using polynomials

Synopsis

#include <comedilib.h>

double comedi_to_physical(lsampl_t data, const comedi_polynomial_t * conversion_polynomial);

Comedi 53 / 161

Description

Converts data given in Comedi’s integer sample values (lsampl_t, between 0 and maxdata) into physical units (double). The
conversion_polynomial parameter is obtained from either comedi_get_hardcal_converter() or comedi_get_s
oftcal_converter(). No range checking of the input data is performed. It is up to you to check for data values of 0 or
maxdata if you want to detect possibly out-of-range readings.

Return value

Physical value corresponding to the input sample value.

5.4.1.32 comedi_unlock

comedi_unlock — subdevice reservation

Synopsis

#include <comedilib.h>

int comedi_unlock(comedi_t * device, unsigned int subdevice);

Description

The function comedi_unlock() releases a subdevice locked by comedi_lock().

Return value

0 on success, otherwise -1.

5.4.2 Asynchronous commands

5.4.2.1 comedi_cancel

comedi_cancel — stop streaming input/output in progress

Synopsis

#include <comedilib.h>

int comedi_cancel(comedi_t * device, unsigned int subdevice);

Description

The function comedi_cancel() can be used to stop a command previously started by comedi_command() which is still in
progress on the subdevice indicated by the parameters device and subdevice.

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.2 comedi_command

comedi_command — start streaming input/output

Comedi 54 / 161

Synopsis

#include <comedilib.h>

int comedi_command(comedi_t * device, comedi_cmd * command);

Description

The function comedi_command() starts a streaming input or output. The command structure pointed to by command specifies
settings for the acquisition. The command must be able to pass comedi_command_test() with a return value of 0, or
comedi_command() will fail. For input subdevices, sample values are read using the function read() on the device file
descriptor. For output subdevices, sample values are written using the function write().

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.3 comedi_command_test

comedi_command_test — test streaming input/output configuration

Synopsis

#include <comedilib.h>

int comedi_command_test(comedi_t * device, comedi_cmd * command);

Description

The function comedi_command_test() tests the command structure pointed to by the parameter command and returns an
integer describing the testing stages that were successfully passed. In addition, if elements of the comedi_cmd structure are
invalid, they may be modified. Source elements are modified to remove invalid source triggers. Argument elements are adjusted
or rounded to the nearest valid value.

Return value

The meanings of the return value are as follows:

• 0 indicates a valid command.

• 1 indicates that one of the ..._src members of the command contained an unsupported trigger. The bits corresponding to
the unsupported triggers are zeroed.

• 2 indicates that the particular combination of ..._src settings is not supported by the driver, or that one of the ..._src

members has the bit corresponding to multiple trigger sources set at the same time.

• 3 indicates that one of the ..._arg members of the command is set outside the range of allowable values. For instance, an
argument for a TRIG_TIMER source which exceeds the board’s maximum speed. The invalid ..._arg members will be
adjusted to valid values.

• 4 indicates that one of the ..._arg members required adjustment. For instance, the argument of a TRIG_TIMER source may
have been rounded to the nearest timing period supported by the board.

• 5 indicates that some aspect of the command’s chanlist is unsupported by the board. For example, some analog input boards
require that all channels in the chanlist use the same input range.

On failure, -1 is returned.

Comedi 55 / 161

5.4.2.4 comedi_get_buffer_contents

comedi_get_buffer_contents — streaming buffer status

Synopsis

#include <comedilib.h>

int comedi_get_buffer_contents(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_contents() is used on a subdevice that has a Comedi command in progress to get the
number of unread bytes. For a streaming input command, this is the number of bytes that can be read. For a streaming output
command, subtracting this from the buffer size gives the space available to be written.

Return value

On success, comedi_get_buffer_contents() returns the number of unread bytes in the buffer. On failure, -1 is returned.

5.4.2.5 comedi_get_buffer_read_offset

comedi_get_buffer_read_offset — streaming buffer read offset

Synopsis

#include <comedilib.h>

int comedi_get_buffer_read_offset(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_read_offset() is used on a subdevice that has a Comedi command in progress to get
the current read position in the streaming buffer as an offset in bytes from the start of the buffer. The position will wrap around
to 0 when it reaches the buffer size. This offset is only useful for memory mapped buffers.

This function replaces comedi_get_buffer_offset() and has the same functionality.

Return value

On success, comedi_get_buffer_read_offset() returns the current read position as an offset in bytes from the start of
the buffer. On failure, -1 is returned.

5.4.2.6 comedi_get_buffer_write_offset

comedi_get_buffer_write_offset — streaming buffer write offset

Synopsis

#include <comedilib.h>

int comedi_get_buffer_write_offset(comedi_t * device, unsigned int subdevice);

Comedi 56 / 161

Description

The function comedi_get_buffer_write_offset() is used on a subdevice that has a Comedi command in progress to
get the current write position in the streaming buffer as an offset in bytes from the start of the buffer. The position will wrap
around to 0 when it reaches the buffer size. This offset is only useful for memory mapped buffers.

Return value

On success, comedi_get_buffer_write_offset() returns the current write position as an offset in bytes from the start
of the buffer. On failure, -1 is returned.

5.4.2.7 comedi_get_buffer_read_count

comedi_get_buffer_read_count — streaming buffer read count

Synopsis

#include <comedilib.h>

int comedi_get_buffer_read_count(comedi_t * device, unsigned int subdevice, unsigned int * read_count);

Description

The function comedi_get_buffer_read_count() is used on a subdevice that has a Comedi command in progress to get
the number of bytes that have been read from the buffer, modulo UINT_MAX + 1. The value is stored in *read_count.

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.8 comedi_get_buffer_write_count

comedi_get_buffer_write_count — streaming buffer write count

Synopsis

#include <comedilib.h>

int comedi_get_buffer_write_count(comedi_t * device, unsigned int subdevice, unsigned int * write_count);

Description

The function comedi_get_buffer_write_count() is used on a subdevice that has a Comedi command in progress to get
the number of bytes that have been written to the buffer, modulo UINT_MAX + 1. The value is stored in *write_count.

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.9 comedi_get_buffer_size

comedi_get_buffer_size — streaming buffer size of subdevice

Comedi 57 / 161

Synopsis

#include <comedilib.h>

int comedi_get_buffer_size(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_size() returns the size (in bytes) of the streaming buffer for the subdevice specified by
device and subdevice.

Return value

On success, comedi_get_buffer_size() returns the size of the buffer in bytes. On failure, -1 is returned.

5.4.2.10 comedi_get_cmd_generic_timed

comedi_get_cmd_generic_timed — streaming input/output capabilities

Synopsis

#include <comedilib.h>

int comedi_get_cmd_generic_timed(comedi_t * device, unsigned int subdevice, comedi_cmd * command, unsigned int chan-
list_len, unsigned int scan_period_ns);

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed, and the results
placed in the command structure pointed to by the parameter command. The command structure pointed to by command is
modified to be a valid command that can be used as a parameter to comedi_command() (after the command has additionally
been assigned a valid chanlist array). The command measures scans consisting of chanlist_len channels at a scan rate that
corresponds to a period of scan_period_ns nanoseconds. The rate is adjusted to a rate that the device can handle.

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.11 comedi_get_cmd_src_mask

comedi_get_cmd_src_mask — streaming input/output capabilities

Synopsis

#include <comedilib.h>

int comedi_get_cmd_src_mask(comedi_t * device, unsigned int subdevice, comedi_cmd * command);

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed, and the results
placed in the command structure pointed to by command. The trigger source elements of the command structure are set to be the
bitwise-or of the subdevice’s supported trigger sources. Other elements in the structure are undefined.

Comedi 58 / 161

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.12 comedi_get_max_buffer_size

comedi_get_max_buffer_size — maximum streaming buffer size

Synopsis

#include <comedilib.h>

int comedi_get_max_buffer_size(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_max_buffer_size() returns the maximum allowable size (in bytes) of the streaming buffer for
the subdevice specified by device and subdevice. Changing the maximum buffer size can be accomplished with comedi_s
et_max_buffer_size() or with the comedi_config program, and requires appropriate privileges.

Return value

On success, the maximum allowable size (in bytes) of the streaming buffer is returned. On failure, -1 is returned.

5.4.2.13 comedi_get_read_subdevice

comedi_get_read_subdevice — find streaming input subdevice

Synopsis

#include <comedilib.h>

int comedi_get_read_subdevice(comedi_t * device);

Description

The function comedi_get_read_subdevice() returns the index of the subdevice whose streaming input buffer is currently
accessible through the device device, if there is one.

Return value

On success, comedi_get_read_subdevice()returns the index of the current “read” subdevice if there is one, or -1 if there
is no “read” subdevice. On failure, -1 is returned.

5.4.2.14 comedi_get_write_subdevice

comedi_get_write_subdevice — find streaming output subdevice

Synopsis

#include <comedilib.h>

int comedi_get_write_subdevice(comedi_t * device);

Comedi 59 / 161

Description

The function comedi_get_write_subdevice() returns the index of the subdevice whose streaming output buffer is cur-
rently accessible through the device device, if there is one.

Return value

On success, comedi_get_write_subdevice()returns the index of the current “write” subdevice if there is one, or -1 if
there is no “write” subdevice. On failure, -1 is returned.

5.4.2.15 comedi_mark_buffer_read

comedi_mark_buffer_read — streaming buffer control

Synopsis

#include <comedilib.h>

int comedi_mark_buffer_read(comedi_t * device, unsigned int subdevice, unsigned int num_bytes);

Description

The function comedi_mark_buffer_read() is used on a subdevice that has a Comedi input command in progress. It should
only be used if you are using a mmap() mapping to read data from Comedi’s buffer (as opposed to calling read() on the device
file descriptor), since Comedi will automatically keep track of how many bytes have been transferred via read() calls. This
function is used to indicate that the next num_bytes bytes in the buffer are no longer needed and may be discarded.

Return value

On success, comedi_mark_buffer_read() returns the number of bytes successfully marked as read. The return value may
be less than the num_bytes. On failure, -1 is returned.

5.4.2.16 comedi_mark_buffer_written

comedi_mark_buffer_written — streaming buffer control

Synopsis

#include <comedilib.h>

int comedi_mark_buffer_written(comedi_t * device, unsigned int subdevice, unsigned int num_bytes);

Description

The function comedi_mark_buffer_written() is used on a subdevice that has a Comedi output command in progress. It
should only be used if you are using a mmap() mapping to write data to Comedi’s buffer (as opposed to calling write() on the
device file descriptor), since Comedi will automatically keep track of how many bytes have been transferred via write() calls.
This function is used to indicate that the next num_bytes bytes in the buffer are valid and may be sent to the device.

Return value

On success, comedi_mark_buffer_written() returns the number of bytes successfully marked as written. The return
value may be less than the num_bytes. On failure, -1 is returned.

Comedi 60 / 161

5.4.2.17 comedi_poll

comedi_poll — force updating of streaming buffer

Synopsis

#include <comedilib.h>

int comedi_poll(comedi_t * device, unsigned int subdevice);

Description

The function comedi_poll() is used on a subdevice that has a Comedi command in progress in order to update the streaming
buffer. If supported by the driver, all available samples are copied to the streaming buffer. These samples may be pending in
DMA buffers or device FIFOs. Only a few Comedi drivers support this operation.

Return value

On success, comedi_poll() returns the number of additional bytes available. On failure, -1 is returned.

5.4.2.18 comedi_set_buffer_size

comedi_set_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_set_buffer_size(comedi_t * device, unsigned int subdevice, unsigned int size);

Description

The function comedi_set_buffer_size() changes the size of the streaming buffer for the subdevice specified by device

and subdevice. The buffer size will be set to size bytes, rounded up to a multiple of the virtual memory page size. The virtual
memory page size can be determined using sysconf(_SC_PAGE_SIZE).

This function does not require special privileges. However, it is limited to a (adjustable) maximum buffer size, which can be
changed by a privileged user calling comedi_set_max_buffer_size(), or running the program comedi_config.

Return value

On success, comedi_set_buffer_size() returns the new buffer size in bytes. On failure, -1 is returned.

5.4.2.19 comedi_set_max_buffer_size

comedi_set_max_buffer_size — streaming maximum buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_set_max_buffer_size(comedi_t * device, unsigned int subdevice, unsigned int max_size);

Comedi 61 / 161

Description

The function comedi_set_max_buffer_size() changes the maximum allowable size (in bytes) of the streaming buffer
for the subdevice specified by device and subdevice. Changing the maximum buffer size requires the user to have appropriate
privileges.

Return value

On success, comedi_set_max_buffer_size() returns the new maximum buffer size in bytes. On failure, -1 is returned.

5.4.2.20 comedi_set_read_subdevice

comedi_set_read_subdevice — set streaming input subdevice

Synopsis

#include <comedilib.h>

int comedi_set_read_subdevice(comedi_t * device, unsigned int subdevice);

Status

Works for Linux "in-tree" Comedi since kernel version 3.19.

Description

The function comedi_set_read_subdevice() sets subdevice as the current “read” subdevice if the subdevice supports
streaming input commands.

No action is performed if subdevice is already the current “read” subdevice.

Changes are local to the open file description for this device and have no effect on other open file descriptions for the underlying
device node.

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.2.21 comedi_set_write_subdevice

comedi_set_write_subdevice — set streaming output subdevice

Synopsis

#include <comedilib.h>

int comedi_set_write_subdevice(comedi_t * device, unsigned int subdevice);

Status

Works for Linux "in-tree" Comedi since kernel version 3.19.

Comedi 62 / 161

Description

The function comedi_set_write_subdevice() sets subdevice as the current “write” subdevice if the subdevice supports
streaming output commands.

No action is performed if subdevice is already the current “write” subdevice.

Changes are local to the open file description for this device and have no effect on other open file descriptions for the underlying
device node.

Return value

On success, 0 is returned. On failure, -1 is returned.

5.4.3 Calibration

5.4.3.1 comedi_apply_calibration

comedi_apply_calibration — set hardware calibration from file

Synopsis

#include <comedilib.h>

int comedi_apply_calibration(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned
int aref, const char * file_path);

Status

alpha

Description

The function comedi_apply_calibration() sets the hardware calibration for the subdevice specified by device and
subdevice so that it is in proper calibration when using the channel specified by channel, range index specified by range

and analog reference specified by aref. It does so by performing writes to the appropriate channels of the board’s calibration
subdevice(s). Depending on the hardware, the calibration settings used may or may not depend on the channel, range, or analog
reference. Furthermore, the calibrations appropriate for different channel, range, and analog reference parameters may not be able
to be applied simultaneously. For example, some boards cannot have their analog inputs calibrated for more than one input range
simultaneously. Applying a calibration for range 1 may blow away a previously applied calibration for range 0. Or, applying
a calibration for analog input channel 0 may cause the same calibration to be applied to all the other analog input channels as
well. Your only guarantee is that calls to comedi_apply_calibration() on different subdevices will not interfere with
each other.

In practice, their are some rules of thumb on how calibrations behave. No calibrations depend on the analog reference. A
multiplexed analog input will have calibration settings that do not depend on the channel, and applying a setting for one channel
will affect all channels equally. Analog outputs, and analog inputs with independent a/d converters for each input channel, will
have calibration settings which do depend on the channel, and the settings for each channel will be independent of the other
channels.

If you wish to investigate exactly what comedi_apply_calibration() is doing, you can perform reads on your board’s
calibration subdevice to see which calibration channels it is changing. You can also try to decipher the calibration file directly
(it’s a text file).

The file_path parameter can be used to specify the file which contains the calibration information. If file_path is NULL,
then Comedilib will use a default file location. The calibration information used by this function is generated by the comedi_calibrate
program (see its man page).

The functions comedi_parse_calibration_file(), comedi_apply_parsed_calibration(), and comedi_cl
eanup_calibration() provide the same functionality at a slightly lower level.

Comedi 63 / 161

Return value

Returns 0 on success, -1 on failure.

5.4.3.2 comedi_apply_parsed_calibration

comedi_apply_parsed_calibration — set calibration from memory

Synopsis

#include <comedilib.h>

int comedi_apply_parsed_calibration(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range,
unsigned int aref, const comedi_calibration_t * calibration);

Status

alpha

Description

This function is similar to comedi_apply_calibration(), except the calibration information is read from memory instead
of a file. This function can be more efficient than comedi_apply_calibration() since the calibration file does not need to
be reparsed with every call. The value of parameter calibration is obtained by a call to comedi_parse_calibration_
file().

Return value

Returns 0 on success, -1 on failure.

5.4.3.3 comedi_cleanup_calibration

comedi_cleanup_calibration — free calibration resources

Synopsis

#include <comedilib.h>

void comedi_cleanup_calibration(comedi_calibration_t * calibration);

Status

alpha

Description

This function frees the resources associated with a comedi_calibration_t obtained from comedi_parse_calibration_f
ile(). The comedi_calibration_t pointed to by calibration can not be used again after calling this function.

5.4.3.4 comedi_get_default_calibration_path

comedi_get_default_calibration_path — get default calibration file path

Comedi 64 / 161

Synopsis

#include <comedilib.h>

char * comedi_get_default_calibration_path(comedi_t * device);

Status

alpha

Description

This function returns a pointer to a string containing a default calibration file path appropriate for the Comedi device specified
by device. Memory for the string is allocated by the function, and should be freed with the C library function free() when the
string is no longer needed.

Return value

A string which contains a file path useable by comedi_parse_calibration_file(). On error, NULL is returned.

5.4.3.5 comedi_get_hardcal_converter

comedi_get_hardcal_converter — get converter for hardware-calibrated subdevice

Synopsis

#include <comedilib.h>

int comedi_get_hardcal_converter(comedi_t * device, unsigned subdevice, unsigned channel, unsigned range, enum comedi_conversion_direction
direction, comedi_polynomial_t * converter);

Status

alpha

Description

The function comedi_get_hardcal_converter() initializes the comedi_polynomial_t pointed to by converter so it
can be passed to either comedi_to_physical(), or comedi_from_physical(). The result can be used to convert data
from the specified subdevice, channel, and range. The direction parameter specifies whether converter will be passed
to comedi_to_physical() or comedi_from_physical().

This function initializes the comedi_polynomial_t pointed to by converter as a simple linear function with no calibration in-
formation, appropriate for boards which do their gain/offset/nonlinearity corrections in hardware. If your board needs calibration
to be performed in software by the host computer, use comedi_get_softcal_converter() instead. A subdevice will
advertise the fact that it depends on a software calibration with the SDF_SOFT_CALIBRATED subdevice flag.

The result of this function will only depend on the channel parameter if either comedi_range_is_chan_specific() or
comedi_maxdata_is_chan_specific() returns true for the specified subdevice.

Return value

Returns 0 on success, -1 on failure.

Comedi 65 / 161

5.4.3.6 comedi_get_softcal_converter

comedi_get_softcal_converter — get converter for software-calibrated subdevice

Synopsis

#include <comedilib.h>

int comedi_get_softcal_converter(unsigned subdevice, unsigned channel, unsigned range, enum comedi_conversion_direction
direction, const comedi_calibration_t * parsed_calibration, comedi_polynomial_t * converter);

Status

alpha

Description

The function comedi_get_softcal_converter() initializes the comedi_polynomial_t pointed to by converter so it
can be passed to either comedi_to_physical() or comedi_from_physical(). The comedi_polynomial_t pointed to by
converter can then be used to convert data for the specified subdevice, channel, and range. The direction parameter
specifies whether converter will be passed to comedi_to_physical() or comedi_from_physical(). The parsed_
calibration parameter points to the software calibration values for your device, and may be obtained by calling comedi_pa
rse_calibration_file() on a calibration file generated by the comedi_soft_calibrate program.

This function is only useful for boards that perform their calibrations in software on the host computer. A subdevice will advertise
the fact that it depends on a software calibration with the SDF_SOFT_CALIBRATED subdevice flag.

Whether or not the result of this function actually depends on the channel parameter is hardware dependent. For example, the
calibration of a multiplexed analog input will typically not depend on the channel, only the range. Analog outputs will typically
use different calibrations for each output channel.

Software calibrations are implemented as polynomials (up to third order). Since the inverse of a polynomial of order higher
than one can’t be represented exactly as another polynomial, you may not be able to get converters for the “reverse” direction.
For example, you may be able to get a converter for an analog input in the COMEDI_TO_PHYSICAL direction, but not in the
COMEDI_FROM_PHYSICAL direction.

Return value

Returns 0 on success, -1 on failure.

5.4.3.7 comedi_parse_calibration_file

comedi_parse_calibration_file — load contents of calibration file

Synopsis

#include <comedilib.h>

comedi_calibration_t * comedi_parse_calibration_file(const char * file_path);

Status

alpha

Comedi 66 / 161

Description

This function parses a calibration file (produced by the comedi_calibrate or comedi_soft_calibrate programs) and returns a
pointer to a comedi_calibration_t which can be passed to the comedi_apply_parsed_calibration() or comedi_get
_softcal_converter() functions. When you are finished using the comedi_calibration_t, you should call comedi_clea
nup_calibration() to free the resources associated with the comedi_calibration_t.

The comedi_get_default_calibration_path() function may be useful in conjunction with this function.

Return value

A pointer to parsed calibration information on success, or NULL on failure.

5.4.4 Digital I/O

5.4.4.1 comedi_dio_bitfield2

comedi_dio_bitfield2 — read/write multiple digital channels

Synopsis

#include <comedilib.h>

int comedi_dio_bitfield2(comedi_t * device, unsigned int subdevice, unsigned int write_mask, unsigned int * bits, unsigned int
base_channel);

Description

The function comedi_dio_bitfield2() allows multiple channels to be read or written together on a digital input, output, or
configurable digital I/O device. The parameter write_mask and the value pointed to by bits are interpreted as bit fields, with
the least significant bit representing channel base_channel. For each bit in write_mask that is set to 1, the corresponding bit
in *bits is written to the digital output channel. After writing all the output channels, each channel is read, and the result placed
in the approprate bits in *bits. The result of reading an output channel is the last value written to the output channel.

All the channels might not be read or written at the exact same time. For example, the driver may need to sequentially write to
several registers in order to set all the digital channels specified by the write_mask and base_channel parameters.

Return value

If successful, 0 is returned, otherwise -1.

5.4.4.2 comedi_dio_config

comedi_dio_config — change input/output properties of channel

Synopsis

#include <comedilib.h>

int comedi_dio_config(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int direction);

Comedi 67 / 161

Description

The function comedi_dio_config() configures individual channels in a digital I/O subdevice to be either input or output,
depending on the value of direction. Valid directions are COMEDI_INPUT or COMEDI_OUTPUT.

Depending on the characteristics of the hardware device, multiple channels might be grouped together in hardware when config-
uring the input/output direction. In this case, a single call to comedi_dio_config() for any channel in the group will affect
the entire group.

Return value

If successful, 0 is returned, otherwise -1.

5.4.4.3 comedi_dio_get_config

comedi_dio_get_config — query input/output properties of channel

Synopsis

#include <comedilib.h>

int comedi_dio_get_config(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int * direction);

Description

The function comedi_dio_get_config() queries the input/output configuration of an individual channel in a digital I/O
subdevice (see comedi_dio_config()). On success, *direction will be set to either COMEDI_INPUT or COMEDI_OUT
PUT.

Return value

If successful, 0 is returned, otherwise -1.

5.4.4.4 comedi_dio_read

comedi_dio_read — read single bit from digital channel

Synopsis

#include <comedilib.h>

int comedi_dio_read(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int * bit);

Description

The function comedi_dio_read() reads the channel channel belonging to the subdevice subdevice of device device.
The data value that is read is stored in the *bit. This function is equivalent to:

comedi_data_read(device, subdevice, channel, 0, 0, bit);

This function does not require a digital subdevice or a subdevice with a maximum data value of 1 to work properly.

If you wish to read multiple digital channels at once, it is more efficient to use comedi_dio_bitfield2() than to call this
function multiple times.

Comedi 68 / 161

Return value

Return values and errors are the same as comedi_data_read().

5.4.4.5 comedi_dio_write

comedi_dio_write — write single bit to digital channel

Synopsis

#include <comedilib.h>

int comedi_dio_write(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int bit);

Description

The function writes the value bit to the channel channel belonging to the subdevice subdevice of device device. This
function is equivalent to:

comedi_data_write(device, subdevice, channel, 0, 0, bit);

This function does not require a digital subdevice or a subdevice with a maximum data value of 1 to work properly.

If you wish to write multiple digital channels at once, it is more efficient to use comedi_dio_bitfield2() than to call this
function multiple times.

Return value

Return values and errors are the same as comedi_data_write().

5.4.5 Error reporting

5.4.5.1 comedi_errno

comedi_errno — number of last Comedilib error

Synopsis

#include <comedilib.h>

int comedi_errno(void);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An internal library variable stores
an error number, which can be retrieved by calling comedi_errno() This error number can be converted to a human-readable
form by the functions comedi_perror() and comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(), strerror(), and errno.
In particular, Comedilib functions sometimes return an error that is generated inside the C library; the comedi error message in
this case is the same as the C library.

The function comedi_errno() returns an integer describing the most recent Comedilib error. This integer may be used as the
errnum parameter for comedi_strerror().

Comedi 69 / 161

5.4.5.2 comedi_loglevel

comedi_loglevel — change Comedilib logging properties

Synopsis

#include <comedilib.h>

int comedi_loglevel(int loglevel);

Description

This function affects the output of debugging and error messages from Comedilib. By increasing the log level loglevel,
additional debugging information will be printed. Error and debugging messages are printed to the standard error output stream
stderr.

The default loglevel can be set by using the environment variable COMEDI_LOGLEVEL. The default log level is 1.

In order to conserve resources, some debugging information is disabled by default when Comedilib is compiled.

The meaning of the log levels is as follows:

Loglevel Behavior
0 Comedilib prints nothing.

1 (default) Comedilib prints error messages when there is a self-consistency error (i.e., an internal
bug.)

2 Comedilib prints an error message when an invalid parameter is passed.

3 Comedilib prints an error message whenever an error is generated in the Comedilib library or in the
C library, when called by Comedilib.

4 Comedilib prints a lot of junk.

Return value

This function returns the previous log level.

5.4.5.3 comedi_perror

comedi_perror — print a Comedilib error message

Synopsis

#include <comedilib.h>

void comedi_perror(const char * s);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An internal library variable stores
an error number, which can be retrieved with comedi_errno(). This error number can be converted to a human-readable form
by the functions comedi_perror() or comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(), strerror(), and errno.
In particular, Comedilib functions sometimes return an error that is generated inside the C library; the comedi error message in
this case is the same as the C library.

The function comedi_perror() prints an error message to the standard error output stream stderr. The error message
consists of the argument string s, a colon, a space, a description of the error condition, and a new line.

Comedi 70 / 161

5.4.5.4 comedi_strerror

comedi_strerror — return string describing Comedilib error code

Synopsis

#include <comedilib.h>

const char * comedi_strerror(int errnum);

Description

When a Comedilib function fails, it usually returns -1 or NULL, depending on the return type. An internal library variable stores
an error number, which can be retrieved with comedi_errno(). This error number can be converted to a human-readable form
by the functions comedi_perror() or comedi_strerror().

These functions are intended to mimic the behavior of the standard C library functions perror(), strerror(), and errno.
In particular, Comedilib functions sometimes return an error that is generated inside the C library; the comedi error message in
this case is the same as the C library.

The function comedi_strerror() returns a pointer to a character string describing the Comedilib error errnum. The returned
string may be modified by a subsequent call to a strerr() or perror() function (either the libc or Comedilib versions). An
unrecognized error number will return a pointer to the string “undefined error”, or similar.

5.4.6 Extensions

5.4.6.1 comedi_arm

comedi_arm — arm a subdevice

Synopsis

#include <comedilib.h>

int comedi_arm(comedi_t * device, unsigned int subdevice, unsigned int source);

Status

alpha

Description

This function arms a subdevice. It may, for example, arm a counter to begin counting. The source parameter specifies what
source should trigger the subdevice to begin. The possible sources are driver-dependant. This function is only useable on subde-
vices that provide support for the INSN_CONFIG_ARM configuration instruction. Some subdevices treat this as an instruction to
arm a specific channel. For those subdevices, this function will arm channel 0 and comedi_arm_channel() should be called
instead of this one to specify the channel.

Return value

0 on success, -1 on error.

5.4.6.2 comedi_arm_channel

comedi_arm_channel — arm a subdevice channel

Comedi 71 / 161

Synopsis

#include <comedilib.h>

int comedi_arm_channel(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int source);

Status

alpha

Description

This function arms a specified channel of a subdevice. It may, for example, arm a counter to begin counting. The source

parameter specifies what source should trigger the subdevice to begin. The possible sources are driver-dependant. This function
is only useable on subdevices that provide support for the INSN_CONFIG_ARM configuration instruction. Some subdevices
treat this as an instruction to arm the whole subdevice and ignore the specified channel. For such subdevices, comedi_arm() is
normally called instead.

Return value

0 on success, -1 on error.

5.4.6.3 comedi_digital_trigger_disable

comedi_digital_trigger_disable — disable a digital trigger

Synopsis

#include <comedilib.h>

int comedi_digital_trigger_disable(comedi_t * device, unsigned int subdevice, unsigned int trigger_id);

Status

alpha

Description

This function disables a digital trigger on a subdevice, returning it to its default, inactive, unconfigured state. If the subdevice
supports several digital triggers, the trigger_id selects one.

This function is only useable on subdevices that provide support for the INSN_CONFIG_DIGITAL_TRIG configuration in-
struction.

Return value

0 on success, -1 on error.

5.4.6.4 comedi_digital_trigger_enable_edges

comedi_digital_trigger_enable_edges — set digital trigger edge detection

Comedi 72 / 161

Synopsis

#include <comedilib.h>

int comedi_digital_trigger_enable_edges(comedi_t * device, unsigned int subdevice, unsigned int trigger_id, unsigned int
base_input, unsigned int rising_edge_inputs, unsigned int falling_edge_inputs);

Status

alpha

Description

This function enables edge detection for a digital trigger on a subdevice. If the subdevice supports several digital triggers, the
trigger_id selects one. The rising_edge_inputs and falling_edge_inputs parameters are bit fields that enable (1)
or disable (0) rising and falling edge detection on a set of (up to) 32 inputs. The least-significant bit corresponds to the input
specified by the base_input parameter, with subsequent bits corresponding to subsequent inputs.

Successive calls to this function have an cumulative effect, which allows digital triggers to be set up for more than 32 inputs.
There may also be a cumulative effect with calls to comedi_digital_trigger_enable_levels() if the digital trigger
supports a combination of edge and level triggering. Due to the cumulative effect, it may be necessary to call comedi_digit
al_trigger_disable() to clear the old settings before reconfiguring the digital trigger inputs.

A digital trigger may support edge detection, level detection, both at different times, or both at the same time. If it supports both
but not at the same time, configuring edge triggers will disable any previous level triggers, or vice versa.

This function is only useable on subdevices that provide support for the INSN_CONFIG_DIGITAL_TRIG configuration in-
struction, and only if the digital trigger supports edge detection.

Return value

0 on success, -1 on error.

5.4.6.5 comedi_digital_trigger_enable_levels

comedi_digital_trigger_enable_levels — set digital trigger level detection

Synopsis

#include <comedilib.h>

int comedi_digital_trigger_enable_levels(comedi_t * device, unsigned int subdevice, unsigned int trigger_id, unsigned int
base_input, unsigned int high_level_inputs, unsigned int low_level_inputs);

Status

alpha

Comedi 73 / 161

Description

This function enables level detection for a digital trigger on a subdevice. If the subdevice supports several digital triggers,
the trigger_id selects one. The high_level_inputs and low_level_inputs parameters are bit fields that enable (1) or
disable (0) high and low level detection on a set of (up to) 32 inputs. The least-significant bit corresponds to the input specified
by the base_input parameter, with subsequent bits corresponding to subsequent inputs.

Successive calls to this function have an cumulative effect, which allows digital triggers to be set up for more than 32 inputs.
There may also be a cumulative effect with calls to comedi_digital_trigger_enable_edges() if the digital trigger
supports a combination of edge and level triggering. Due to the cumulative effect, it may be necessary to call comedi_digit
al_trigger_disable() to clear the old settings before reconfiguring the digital trigger inputs.

A digital trigger may support edge detection, level detection, both at different times, or both at the same time. If it supports both
but not at the same time, configuring level triggers will disable any previous edge triggers, or vice versa.

This function is only useable on subdevices that provide support for the INSN_CONFIG_DIGITAL_TRIG configuration in-
struction, and only if the digital trigger supports level detection.

Return value

0 on success, -1 on error.

5.4.6.6 comedi_disarm

comedi_disarm — disarm a subdevice

Synopsis

#include <comedilib.h>

int comedi_disarm(comedi_t * device, unsigned int subdevice);

Status

alpha

Description

This function disarms a subdevice. It may, for example, stop a counter counting. This function is only useable on subdevices
that provide support for the INSN_CONFIG_DISARM configuration instruction. Some subdevices treat this as an instruction to
disarm a specific channel. For those subdevices, this function will disarm channel 0 and comedi_disarm_channel() should
be called instead of this one to specify the channel.

Return value

0 on success, -1 on error.

5.4.6.7 comedi_disarm_channel

comedi_disarm_channel — disarm a subdevice channel

Synopsis

#include <comedilib.h>

int comedi_disarm_channel(comedi_t * device, unsigned int subdevice, unsigned int channel);

Comedi 74 / 161

Status

alpha

Description

This function disarms a specified channel of a subdevice. It may, for example, stop a counter counting. This function is only
useable on subdevices that provide support for the INSN_CONFIG_DISARM configuration instruction. Some subdevices treat
this as an instruction to disarm the whole subdevice and ignore the specified channel. For such subdevices, comedi_disarm()
is normally called instead.

Return value

0 on success, -1 on error.

5.4.6.8 comedi_get_clock_source

comedi_get_clock_source — get master clock for a subdevice

Synopsis

#include <comedilib.h>

int comedi_get_clock_source(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int * clock, unsigned
int * period_ns);

Status

alpha

Description

This function queries the master clock for a subdevice, as set by comedi_set_clock_source(). The currently configured
master clock will be written to *clock. The possible values and their corresponding clocks are driver-dependant. The period of
the clock in nanoseconds (or zero if it is unknown) will be written to *period_ns. If the subdevice does not support configuring
its master clocks on a per-channel basis, then the channel parameter will be ignored.

It is safe to pass NULL pointers as the clock or period_ns parameters. This function is only useable on subdevices that provide
support for the INSN_CONFIG_GET_CLOCK_SRC configuration instruction.

Return value

0 on success, -1 on error.

5.4.6.9 comedi_get_gate_source

comedi_get_gate_source — get gate for a subdevice

Synopsis

#include <comedilib.h>

int comedi_get_gate_source(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int gate_index, unsigned
int * gate_source);

Comedi 75 / 161

Status

alpha

Description

This function queries the gate for a subdevice, as set by comedi_set_gate_source(). The currently configured gate source
will be written to *gate_source. The possible values and their corresponding gates are driver-dependant. If the subdevice does
not support configuring its gates on a per-channel basis, then the channel parameter will be ignored.

This function is only useable on subdevices that provide support for the INSN_CONFIG_GET_GATE_SRC configuration in-
struction.

Return value

0 on success, -1 on error.

5.4.6.10 comedi_get_hardware_buffer_size

comedi_get_hardware_buffer_size — get size of subdevice’s hardware buffer

Synopsis

#include <comedilib.h>

int comedi_get_hardware_buffer_size(comedi_t *device, unsigned int subdevice, enum comedi_io_direction direction);

Description

This function returns the number of bytes the subdevice can hold in it’s hardware buffer. The term “hardware buffer” refers to
any FIFOs, etc. on the acquisition board itself which are used during streaming commands. This does not include the buffer
maintained by the comedi kernel module in host memory, whose size may be queried by comedi_get_buffer_size().
The direction parameter of type enum comedi_io_direction should be set to COMEDI_INPUT to query the input buffer size
(e.g., the buffer of an analog input subdevice), or COMEDI_OUTPUT to query the output buffer size (e.g., the buffer of an analog
output).

Return value

Hardware buffer size in bytes, or -1 on error.

5.4.6.11 comedi_get_routing

comedi_get_routing — get routing for an output

Synopsis

#include <comedilib.h>

int comedi_get_routing(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int * routing);

Status

alpha

Comedi 76 / 161

Description

This function queries the routing for an output, as set by comedi_set_routing(). The currently configured routing will be
written to *routing. The possible values and their corresponding routings are driver-dependant.

This function is only useable on subdevices that provide support for the INSN_CONFIG_GET_ROUTING configuration instruc-
tion.

Return value

0 on success, -1 on error.

5.4.6.12 comedi_reset

comedi_reset — reset a subdevice

Synopsis

#include <comedilib.h>

int comedi_reset(comedi_t * device, unsigned int subdevice);

Status

alpha

Description

This function resets a subdevice. It is only useable on subdevices that provide support for the INSN_CONFIG_RESET config-
uration instruction. Some subdevices treat this as an instruction to reset a specific channel. For those subdevices, this function
will reset channel 0 and comedi_reset_channel() should be called instead of this one to specify the channel.

Return value

0 on success, -1 on error.

5.4.6.13 comedi_reset_channel

comedi_reset_channel — reset a subdevice channel

Synopsis

#include <comedilib.h>

int comedi_reset_channel(comedi_t * device, unsigned int subdevice, unsigned int channel);

Status

alpha

Comedi 77 / 161

Description

This function resets a specified channel of a subdevice. It is only useable on subdevices that provide support for the INSN_CON
FIG_RESET configuration instruction. Some subdevices treat this as an instruction to reset the whole subdevice and ignore the
specified channel. For such subdevices, comedi_reset() is normally called instead.

Return value

0 on success, -1 on error.

5.4.6.14 comedi_set_clock_source

comedi_set_clock_source — set master clock for a subdevice

Synopsis

#include <comedilib.h>

int comedi_set_clock_source(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int clock, unsigned int
period_ns);

Status

alpha

Description

This function selects a master clock for a subdevice. The clock parameter selects the master clock, and is driver-dependant. If
the subdevice does not support configuring its master clocks on a per-channel basis, then the channel parameter will be ignored.
The period_ns parameter specifies the clock’s period in nanoseconds. It may left unspecified by using a value of zero. Drivers
will ignore the clock period if they already know what the clock period should be for the specified clock (e.g. for an on-board
20MHz oscillator). Certain boards which use a phase-locked loop to synchronize to external clock sources must be told the
period of the external clock. Specifying a clock period for an external clock may also allow the driver to support TRIG_TIMER
sources in commands while using the external clock.

The clock may be queried with the comedi_get_clock_source() function.

This function is only useable on subdevices that provide support for the INSN_CONFIG_SET_CLOCK_SRC configuration
instruction.

Return value

0 on success, -1 on error.

5.4.6.15 comedi_set_counter_mode

comedi_set_counter_mode — change mode of a counter subdevice

Synopsis

#include <comedilib.h>

int comedi_set_counter_mode(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int mode);

Comedi 78 / 161

Status

alpha

Description

This function configures a counter subdevice. The meaning of the mode parameter is driver-dependent. If the subdevice does not
support configuring its mode on a per-channel basis, then the channel parameter will be ignored.

It is only useable on subdevices that provide support for the INSN_CONFIG_SET_COUNTER_MODE configuration instruction.

Return value

0 on success, -1 on error.

5.4.6.16 comedi_set_filter

comedi_set_filter — select a filter for a subdevice

Synopsis

#include <comedilib.h>

int comedi_set_filter(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int filter);

Status

alpha

Description

This function selects a filter for a subdevice. For instance, a digital input subdevice may provide deglitching filters with varying
cutoff frequencies. The filters are used to prevent high-frequency noise from causing unwanted transitions on the digital inputs.
This function can tell the hardware which deglitching filter to use, or to use none at all.

The filter parameter selects which of the subdevice’s filters to use, and is driver-dependant.

This function is only useable on subdevices that provide support for the INSN_CONFIG_FILTER configuration instruction.

Return value

0 on success, -1 on error.

5.4.6.17 comedi_set_gate_source

comedi_set_gate_source — select gate source for a subdevice

Synopsis

#include <comedilib.h>

int comedi_set_gate_source(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int gate_index, unsigned
int gate_source);

Comedi 79 / 161

Status

alpha

Description

This function selects a gate source for a subdevice. The gate_index parameter selects which gate is being configured, should
the subdevice have multiple gates. It takes a value from 0 to N-1 for a subdevice with N different gates. The gate_source

parameter selects which signal you wish to use as the gate, and is also driver-dependent. If the subdevice does not support
configuring its gates on a per-channel basis, then the channel parameter will be ignored.

You may query the gate source with the comedi_get_gate_source() function. This function is only useable on subdevices
that provide support for the INSN_CONFIG_SET_GATE_SRC configuration instruction.

Return value

0 on success, -1 on error.

5.4.6.18 comedi_set_other_source

comedi_set_other_source — select source signal for something other than a gate or clock

Synopsis

#include <comedilib.h>

int comedi_set_other_source(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int other, unsigned int
source);

Status

alpha

Description

This function allows selection of a source signal for something on a subdevice other than a gate (which uses comedi_set_gat
e_source()) or a clock (which uses comedi_set_clock_source()). The other parameter selects which “other” we are
configuring, and is driver-dependent. The source parameter selects the source we which to use for the “other”. If the subdevice
does not support configuring its “other” sources on a per-channel basis, then the channel parameter will be ignored.

As an example, this function is used to select which PFI digital input channels should be used as the A/B/Z signals when running
a counter on an NI M-Series board as a quadrature encoder. The other parameter selects either the A, B, or Z signal, and the
source parameter is used to specify which PFI digital input channel the external A, B, or Z signal is physically connected to.

This function is only useable on subdevices that provide support for the INSN_CONFIG_SET_OTHER_SRC configuration
instruction.

Return value

0 on success, -1 on error.

5.4.6.19 comedi_set_routing

comedi_set_routing — select a routing for an output

Comedi 80 / 161

Synopsis

#include <comedilib.h>

int comedi_set_routing(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int routing);

Status

alpha

Description

This function configures a mutiplexed output channel which can output a variety of different signals (such as NI’s RTSI and
PFI lines). The routing parameter selects which signal should be routed to appear on the selected output channel, and is
driver-dependant.

The routing may be queried with the comedi_get_routing() function. This function is only useable on subdevices that
provide support for the INSN_CONFIG_SET_ROUTING configuration instruction.

Return value

0 on success, -1 on error.

5.4.7 Deprecated functions

5.4.7.1 comedi_dio_bitfield

comedi_dio_bitfield — read/write multiple digital channels

Synopsis

#include <comedilib.h>

int comedi_dio_bitfield(comedi_t * device, unsigned int subdevice, unsigned int write_mask, unsigned int * bits);

Status

deprecated

Description

This function is deprecated. Use comedi_dio_bitfield2() instead. It is equivalent to using comedi_dio_bitfield2()
with base_channel set to 0.

5.4.7.2 comedi_get_buffer_offset

comedi_get_buffer_offset — streaming buffer status (deprecated)

Status

deprecated

Comedi 81 / 161

Description

This function is deprecated. Use comedi_get_buffer_read_offset() instead. It has the same functionality as comedi
_get_buffer_read_offset().

5.4.7.3 comedi_get_timer

comedi_get_timer — timer information (deprecated)

Synopsis

#include <comedilib.h>

int comedi_get_timer(comedi_t * device, unsigned int subdevice, double frequency, unsigned int * trigvar, double * actual_frequency);

Status

deprecated

Description

The function comedi_get_timer() converts the frequency frequency to a number suitable to send to the driver in a
comedi_trig structure. This function remains for compatibility with very old versions of Comedi, that converted sampling rates
to timer values in the library. This conversion is now done in the kernel, and every device has the timer type nanosec_timer,
indicating that timer values are simply a time specified in nanoseconds.

5.4.7.4 comedi_sv_init

comedi_sv_init — slowly-varying inputs

Synopsis

#include <comedilib.h>

int comedi_sv_init(comedi_sv_t * sv, comedi_t * device, unsigned int subdevice, unsigned int channel);

Status

deprecated

Description

The function comedi_sv_init() initializes the slow varying Comedi structure pointed to by sv to use the device device,
the analog input subdevice subdevice, and the channel channel. The slow varying Comedi structure is used by comedi_sv
_measure() to accurately measure an analog input by averaging over many samples. The default number of samples is 100.

Return value

This function returns 0 on success, -1 on error.

5.4.7.5 comedi_sv_measure

comedi_sv_measure — slowly-varying inputs

Comedi 82 / 161

Synopsis

#include <comedilib.h>

int comedi_sv_measure(comedi_sv_t * sv, double * data);

Status

deprecated

Description

The function comedi_sv_measure() uses the slowly varying Comedi structure pointed to by sv to measure a slowly varying
signal. If successful, the result (in physical units) is stored in the location pointed to by data, and the number of samples is
returned. On error, -1 is returned.

5.4.7.6 comedi_sv_update

comedi_sv_update — slowly-varying inputs

Synopsis

#include <comedilib.h>

int comedi_sv_update(comedi_sv_t * sv);

Status

deprecated

Description

The function comedi_sv_update() updates internal parameters of the slowly varying Comedi structure pointed to by sv.

5.4.7.7 comedi_timed_1chan

comedi_timed_1chan — streaming input (deprecated)

Synopsis

#include <comedilib.h>

int comedi_timed_1chan(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
double frequency, unsigned int num_samples, double * data);

Status

deprecated

Description

Not documented.

Comedi 83 / 161

5.4.7.8 comedi_trigger

comedi_trigger — perform streaming input/output (deprecated)

Synopsis

#include <comedilib.h>

int comedi_trigger(comedi_t * device, comedi_trig * trig);

Status

deprecated

Description

The function comedi_trigger() instructs Comedi to perform the command specified by the trigger structure pointed to by
trig. The return value depends on the particular trigger being issued. If there is an error, -1 is returned.

5.5 Language bindings

Comedilib is a C library but comes also with bindings for Python, Perl, and Ruby. This enables usage of a DAQ device directly
from these higher level languages.

5.5.1 Python bindings

Python bindings are automatically generated by SWIG. So always keep in mind that for precise information the SWIG documen-
tation can come in handy in addition to the Comedi documentation.

The name of the module is called comedi. All the C functions, structs, and constants are directly available as is. So you can
refer directly to the C documentation for most of the usage. Note that, as in C, the functions either return the successful result
or an error code. Unlike typical Python functions, no exceptions are generated on errors (excepted type-checking performed by
SWIG). For example, to open a Comedi device you can write in Python:

import comedi
device = comedi.comedi_open("/dev/comedi0")
if device is None:

errno = comedi.comedi_errno()
print "Error (%d) %s" % (errno, comedi.comedi_strerror(errno))
return

There are a few things to be aware of. The SWIG bindings automatically take care of converting functions with output parameters
to function returning multiple values, if the type of the output parameter is simple. For example comedi_data_read() takes
as argument a lsampl_t *data which will contain the data read after the function returns. So in C it is used like this:

lsampl_t data;
rc = comedi_data_read(device, subdevice, channel, range, aref, &data);

As lsampl_t is a 32-bit unsigned int, in Python, the function is used like this:

rc, data = comedi.comedi_data_read(device, subdevice, channel, range, aref)

SWIG takes care of converting simple types between Python and C, but does not convert more complex types such as arrays or
structs. Special Python classes are created for these. Moreover, Comedi also provides a few macros. These macros are available
in Python as functions with similar names, but lowercase: comedi.cr_pack(), comedi.cr_range(), etc. So to create and
modify a command, one can do in Python:

http://www.swig.org/Doc2.0/index.html
http://www.swig.org/Doc2.0/index.html
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 84 / 161

cmd = comedi.comedi_cmd_struct()
comedi.comedi_get_cmd_generic_timed(device, subdevice, cmd, nchans, period_ns)
cmd.stop_src = comedi.TRIG_COUNT
cmd.stop_arg = nscans
create and add the channel list
clist = comedi.chanlist(nchans)
for i, channel in range(nchans):

clist[i] = comedi.cr_pack(channel, range, comedi.AREF_GROUND)
cmd.chanlist = clist

One unfortunate consequence is that the objects to represent arrays are as low-level as C arrays (i.e., a pointer with an addition).
They have no range checking and no iterator. In addition, they have to be cast() from the Python object to the C object. So to
create an instruction to call the internal trigger, you would write in Python:

insn = comedi.comedi_insn_struct()
insn.subdev = subdevice
insn.insn = comedi.INSN_INTTRIG
insn.n = 1
data = comedi.lsampl_array(insn.n)
data[0] = num
insn.data = data.cast()
rc = comedi.comedi_do_insn(device, insn)

When you need to convert from a raw SWIG object to a proxy object, the .frompointer() of the Python object can be used.
Also note that by default when the proxy object is deleted, SWIG frees the memory associated to it. To still be able to use the
memory, you need to set .thisown to False.

Reading (or writing) a large set of data from a Comedi device is done via a file. In C, this is done by using a file number, but in
Python you need a File object. You can get a File object via os.fdopen(). For example, to read an array of input data from
a Comedi device into a numpy array, one could do:

fileno = comedi.comedi_fileno(device)
file = os.fdopen(fileno, ’r+’)
buf = numpy.fromfile(file, dtype=numpy.uint32, count=(nscans * nchans))

5.6 Kernel drivers

5.6.1 8255 -- generic 8255 support

Author: ds

Status: works

Manufacturer Device Name
standard 8255 8255

The classic in digital I/O. The 8255 appears in Comedi as a single
digital I/O subdevice with 24 channels. The channel 0 corresponds
to the 8255’s port A, bit 0; channel 23 corresponds to port C, bit
7. Direction configuration is done in blocks, with channels 0-7,
8-15, 16-19, and 20-23 making up the 4 blocks. The only 8255 mode
supported is mode 0.

You should enable compilation this driver if you plan to use a board
that has an 8255 chip. For multifunction boards, the main driver will
configure the 8255 subdevice automatically.

http://www.comedi.org
http://www.comedi.org

Comedi 85 / 161

This driver also works independently with ISA and PCI cards that
directly map the 8255 registers to I/O ports, including cards with
multiple 8255 chips. To configure the driver for such a card, the
option list should be a list of the I/O port bases for each of the
8255 chips. For example,

comedi_config /dev/comedi0 8255 0x200,0x204,0x208,0x20c

Note that most PCI 8255 boards do NOT work with this driver, and
need a separate driver as a wrapper. For those that do work, the
I/O port base address can be found in the output of ’lspci -v’.

5.6.2 acl7225b -- ADLINK NuDAQ ACL-7225b & compatibles

Author: José Luis Sánchez (jsanchezv@teleline.es)

Status: testing

Manufacturer Device Name
ADLINK ACL-7225b acl7225b
ICP P16R16DIO p16r16dio

5.6.3 adl_pci6208 -- ADLINK PCI-6216V

Author: nsyeow <nsyeow@pd.jaring.my>

Status: untested

Manufacturer Device Name
ADLINK PCI-6216V adl_pci6208

Configuration Options:
none

The driver should work for PCI-6208V, PCI-6208A and PCI-6216V, but all
devices will be treated as a PCI-6216V.

For PCI-6208V and PCI-6208A, only AO channels 0 to 7 are connected and
AO channels 8 to 15 will behave as "phantom" outputs.

The current output ranges for PCI-6208A are not supported. Only Comedi
sample values 0x8000 to 0xffff should be written to the AO channels on a
PCI-6208A. Its voltage to current daughter board (EXP-8A) only supports
an input range of 0 to 10 volts and negative voltages may damage the
board. Comedi sample values 0x0000 to 0x7fff would produce negative
voltages from -10 to 0 volts.

Comedi 86 / 161

5.6.4 adl_pci7230 -- Driver for the ADLINK PCI-7230 32 ch. isolated digital io board

Author: David Fernandez <dfcastelao@gmail.com>

Status: experimental

Manufacturer Device Name
ADLINK PCI-7230 adl_pci7230

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

5.6.5 adl_pci7250 -- Driver for the ADLINK PCI-7250 relay output & digital input card

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
ADLINK LPCI-7250 LPCIe-7250 adl_pci7250

The driver assumes that 3 PCI-7251 modules are fitted to the PCI-7250,
giving 32 channels of relay outputs and 32 channels of isolated digital
inputs. That is also the case for the LPCI-7250 and LPCIe-7250 cards
although they do not physically support the PCI-7251 modules.

Not fitting the PCI-7251 modules shouldn’t do any harm, but the extra
inputs and relay outputs won’t work!

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

Comedi 87 / 161

5.6.6 adl_pci7296 -- Driver for the ADLINK PCI-7296 96 ch. digital io board

Author: Jon Grierson <jd@renko.co.uk>

Status: testing

Manufacturer Device Name
ADLINK PCI-7296 adl_pci7296

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

5.6.7 adl_pci7432 -- Driver for the ADLINK PCI-7432 64 ch. isolated digital io board

Author: Michel Lachaine <mike@mikelachaine.ca>

Status: experimental

Manufacturer Device Name
ADLINK PCI-7432 adl_pci7432

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

5.6.8 adl_pci8164 -- Driver for the ADLINK PCI-8164 4 Axes Motion Control board

Author: Michel Lachaine <mike@mikelachaine.ca>

Status: experimental

Manufacturer Device Name
ADLINK PCI-8164 adl_pci8164

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

Comedi 88 / 161

5.6.9 adl_pci9111 -- ADLINK PCI-9111HR

Author: Emmanuel Pacaud <emmanuel.pacaud@univ-poitiers.fr>

Status: experimental

Manufacturer Device Name
ADLINK PCI-9111HR adl_pci9111

- ai_insn read
- ao_insn read/write
- di_insn read
- do_insn read/write
- ai_do_cmd mode with the following sources:

- start_src TRIG_NOW
- scan_begin_src TRIG_FOLLOW TRIG_TIMER TRIG_EXT
- convert_src TRIG_TIMER TRIG_EXT
- scan_end_src TRIG_COUNT
- stop_src TRIG_COUNT TRIG_NONE

The scanned channels must be consecutive and start from 0. They must
all have the same range and aref.

Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

5.6.10 adl_pci9112 -- ADLINK PCI-9112

Author: Pascal Berthou <berthou@laas.fr> Emmanuel Pacaud <emmanuel.pacaud@univ-poitiers.fr>

Status: experimental

Manufacturer Device Name
ADLINK PCI-9112 adl_pci9112

- ai_insn read

Comedi 89 / 161

- ao_insn read/write
- di_insn read
- do_insn read/write

Following command mode are not tested
- ai_do_cmd mode with the following sources:

- start_src TRIG_NOW
- scan_begin_src TRIG_FOLLOW TRIG_TIMER TRIG_EXT
- convert_src TRIG_TIMER TRIG_EXT
- scan_end_src TRIG_COUNT
- stop_src TRIG_COUNT TRIG_NONE

The scanned channels must be consecutive and start from 0. They must
all have the same range and aref.

Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

5.6.11 adl_pci9118 -- ADLINK PCI-9118DG, PCI-9118HG, PCI-9118HR

Author: Michal Dobes <dobes@tesnet.cz>

Status: works

Manufacturer Device Name
ADLINK PCI-9118DG pci9118dg
ADLINK PCI-9118HG pci9118hg
ADLINK PCI-9118HR pci9118hr

This driver supports AI, AO, DI and DO subdevices.
AI subdevice supports cmd and insn interface,
other subdevices support only insn interface.
For AI:
- If cmd->scan_begin_src=TRIG_EXT then trigger input is TGIN (pin 46).
- If cmd->convert_src=TRIG_EXT then trigger input is EXTTRG (pin 44).
- If cmd->start_src/stop_src=TRIG_EXT then trigger input is TGIN (pin 46).
- It is not neccessary to have cmd.scan_end_arg=cmd.chanlist_len but

cmd.scan_end_arg modulo cmd.chanlist_len must by 0.
- If return value of cmdtest is 5 then you’ve bad channel list

(it isn’t possible mixture S.E. and DIFF inputs or bipolar and unipolar
ranges).

There are some hardware limitations:
a) You cann’t use mixture of unipolar/bipoar ranges or differencial/single

ended inputs.
b) DMA transfers must have the length aligned to two samples (32 bit),

so there is some problems if cmd->chanlist_len is odd. This driver tries

Comedi 90 / 161

bypass this with adding one sample to the end of the every scan and discard
it on output but this cann’t be used if cmd->scan_begin_src=TRIG_FOLLOW
and is used flag TRIG_WAKE_EOS, then driver switch to interrupt driven mode
with interrupt after every sample.

c) If isn’t used DMA then you can use only mode where
cmd->scan_begin_src=TRIG_FOLLOW.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, then first available PCI
card will be used.

[2] - 0= standard 8 DIFF/16 SE channels configuration
n= external multiplexer connected, 1<=n<=256

[3] - 0=autoselect DMA or EOC interrupts operation
1=disable DMA mode
3=disable DMA and INT, only insn interface will work

[4] - sample&hold signal - card can generate signal for external S&H board
0=use SSHO (pin 45) signal is generated in onboard hardware S&H logic
0!=use ADCHN7 (pin 23) signal is generated from driver, number

say how long delay is requested in ns and sign polarity of the hold
(in this case external multiplexor can serve only 128 channels)

[5] - 0=stop measure on all hardware errors
2|=ignore ADOR - A/D Overrun status

8|=ignore Bover - A/D Burst Mode Overrun status
256|=ignore nFull - A/D FIFO Full status

5.6.12 adq12b -- driver for MicroAxial ADQ12-B data acquisition and control card

Author: jeremy theler <thelerg@ib.cnea.gov.ar>

Status: works

Manufacturer Device Name
MicroAxial ADQ12-B adq12b

Driver for the acquisition card ADQ12-B (without any add-on).

- Analog input is subdevice 0 (16 channels single-ended or 8 differential)
- Digital input is subdevice 1 (5 channels)
- Digital output is subdevice 1 (8 channels)
- The PACER is not supported in this version

If you do not specify any options, they will default to

comedi_config /dev/comedi0 adq12b 0x300,0,0

option 1: I/O base address. The following table is provided as a help
of the hardware jumpers.

address jumper JADR
0x300 1 (factory default)
0x320 2

Comedi 91 / 161

0x340 3
0x360 4
0x380 5
0x3A0 6

option 2: unipolar/bipolar ADC selection: 0 -> bipolar, 1 -> unipolar

selection comedi_config option JUB
bipolar 0 2-3 (factory default)
unipolar 1 1-2

option 3: single-ended/differential AI selection: 0 -> SE, 1 -> differential

selection comedi_config option JCHA JCHB
single-ended 0 1-2 1-2 (factory default)
differential 1 2-3 2-3

written by jeremy theler <thelerg@ib.cnea.gov.ar>

instituto balseiro
comision nacional de energia atomica
universidad nacional de cuyo
argentina

21-feb-2008
+ changed supported devices string (missused the [] and ())

13-oct-2007
+ first try

5.6.13 adv_pci1710 -- Advantech PCI-1710, PCI-1710HG, PCI-1711, PCI-1713, Advantech PCI-1720, PCI-1731

Author: Michal Dobes <dobes@tesnet.cz>

Status: works

Manufacturer Device Name
Advantech PCI-1710 pci1710 or adv_pci1710
Advantech PCI-1710HG pci1710hg
Advantech PCI-1711 pci1711 or adv_pci1710
Advantech PCI-1713 pci1713 or adv_pci1710
Advantech PCI-1716 pci1716 or adv_pci1710
Advantech PCI-1720 pci1720 or adv_pci1710
Advantech PCI-1731 pci1731 or adv_pci1710

This driver supports AI, AO, DI and DO subdevices.
AI subdevice supports cmd and insn interface,
other subdevices support only insn interface.

The PCI-1710 and PCI-1710HG have the same PCI device ID, so the
driver cannot distinguish between them, as would be normal for a

Comedi 92 / 161

PCI driver.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, the first available PCI
device will be used.

5.6.14 adv_pci1723 -- Advantech PCI-1723

Author: yonggang <rsmgnu@gmail.com>, Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Advantech PCI-1723 adv_pci1723

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, the first supported
PCI device found will be used.

Subdevice 0 is 8-channel AO, 16-bit, range +/- 10 V.

Subdevice 1 is 16-channel DIO. The channels are configurable as input or
output in 2 groups (0 to 7, 8 to 15). Configuring any channel implicitly
configures all channels in the same group.

1. Add the two milliamp ranges to the AO subdevice (0 to 20 mA, 4 to 20 mA).
2. Read the initial ranges and values of the AO subdevice at start-up instead

of reinitializing them.
3. Implement calibration.

5.6.15 adv_pci_dio -- Advantech PCI-1730, PCI-1733, PCI-1734, PCI-1735U, PCI-1736UP, PCI-1750, PCI-1751, PCI-1752,
PCI-1753/E, PCI-1754, PCI-1756, PCI-1762

Author: Michal Dobes <dobes@tesnet.cz>

Status: untested

Manufacturer Device Name
Advantech PCI-1730 adv_pci_dio
Advantech PCI-1733 adv_pci_dio
Advantech PCI-1734 adv_pci_dio
Advantech PCI-1735U adv_pci_dio

Comedi 93 / 161

Manufacturer Device Name
Advantech PCI-1736UP adv_pci_dio
Advantech PCI-1739U adv_pci_dio
Advantech PCI-1750 adv_pci_dio
Advantech PCI-1751 adv_pci_dio
Advantech PCI-1752 adv_pci_dio
Advantech PCI-1753 adv_pci_dio
Advantech PCI-1753+PCI-1753E adv_pci_dio
Advantech PCI-1754 adv_pci_dio
Advantech PCI-1756 adv_pci_dio
Advantech PCI-1760 adv_pci_dio
Advantech PCI-1762 adv_pci_dio

This driver supports now only insn interface for DI/DO/DIO.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

If bus/slot is not specified, the first available PCI
device will be used.

5.6.16 aio_aio12_8 -- Acces I/O Products PC-104 AIO12-8 Analog I/O Board

Author: Pablo Mejia <pablo.mejia@cctechnol.com>

Status: experimental

Manufacturer Device Name
Acces I/O PC-104 AIO12-8 adv_pci_dio

Configuration Options:
[0] - I/O port base address

Only synchronous operations are supported.

5.6.17 aio_iiro_16 -- Acces I/O Products PC-104 IIRO16 Relay And Isolated Input Board

Author: Zachary Ware <zach.ware@cctechnol.com>

Status: experimental

Manufacturer Device Name
Acces I/O PC-104 AIO12-8 adv_pci_dio

Comedi 94 / 161

Configuration Options:
[0] - I/O port base address

5.6.18 amplc_dio200 -- Amplicon 200 Series Digital I/O

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PC212E pc212e
Amplicon PC214E pc214e
Amplicon PC215E pc215e
Amplicon PCI215 pci215 or amplc_dio200
Amplicon PCIe215 pcie215 or amplc_dio200
Amplicon PC218E pc218e
Amplicon PCIe236 pcie236 or amplc_dio200
Amplicon PC272E pc272e
Amplicon PCI272 pci272 or amplc_dio200
Amplicon PCIe296 pcie296 or amplc_dio200

Configuration options - PC212E, PC214E, PC215E, PC218E, PC272E:
[0] - I/O port base address
[1] - IRQ (optional, but commands won’t work without it)

Configuration options - PCI215, PCIe215, PCIe236, PCI272, PCIe296:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will
be used.

Passing a zero for an option is the same as leaving it unspecified.

SUBDEVICES

PC212E PC214E PC215E/PCI215
------------- ------------- -------------

Subdevices 6 4 5
0 PPI-X PPI-X PPI-X
1 CTR-Y1 PPI-Y PPI-Y
2 CTR-Y2 CTR-Z1* CTR-Z1
3 CTR-Z1 INTERRUPT* CTR-Z2
4 CTR-Z2 INTERRUPT
5 INTERRUPT

PCIe215 PC218E PCIe236
------------- ------------- -------------

Subdevices 8 7 8
0 PPI-X CTR-X1 PPI-X
1 UNUSED CTR-X2 UNUSED

Comedi 95 / 161

2 PPI-Y CTR-Y1 UNUSED
3 UNUSED CTR-Y2 UNUSED
4 CTR-Z1 CTR-Z1 CTR-Z1
5 CTR-Z2 CTR-Z2 CTR-Z2
6 TIMER INTERRUPT TIMER
7 INTERRUPT INTERRUPT

PC272E/PCI272 PCIe296
------------- -------------

Subdevices 4 8
0 PPI-X PPI-X1
1 PPI-Y PPI-X2
2 PPI-Z PPI-Y1
3 INTERRUPT PPI-Y2
4 CTR-Z1
5 CTR-Z2
6 TIMER
7 INTERRUPT

Each PPI is a 8255 chip providing 24 DIO channels. The DIO channels
are configurable as inputs or outputs in four groups:

Port A - channels 0 to 7
Port B - channels 8 to 15
Port CL - channels 16 to 19
Port CH - channels 20 to 23

Only mode 0 of the 8255 chips is supported.

Each CTR is a 8254 chip providing 3 16-bit counter channels. Each
channel is configured individually with INSN_CONFIG instructions. The
specific type of configuration instruction is specified in data[0].
Some configuration instructions expect an additional parameter in
data[1]; others return a value in data[1]. The following configuration
instructions are supported:

INSN_CONFIG_SET_COUNTER_MODE. Sets the counter channel’s mode and
BCD/binary setting specified in data[1].

INSN_CONFIG_8254_READ_STATUS. Reads the status register value for the
counter channel into data[1].

INSN_CONFIG_SET_CLOCK_SRC. Sets the counter channel’s clock source as
specified in data[1] (this is a hardware-specific value). Not
supported on PC214E. For the other boards, valid clock sources are
0 to 7 as follows:

0. CLK n, the counter channel’s dedicated CLK input from the SK1
connector. (N.B. for other values, the counter channel’s CLKn
pin on the SK1 connector is an output!)

1. Internal 10 MHz clock.
2. Internal 1 MHz clock.
3. Internal 100 kHz clock.
4. Internal 10 kHz clock.
5. Internal 1 kHz clock.
6. OUT n-1, the output of counter channel n-1 (see note 1 below).
7. Ext Clock, the counter chip’s dedicated Ext Clock input from

the SK1 connector. This pin is shared by all three counter
channels on the chip.

INSN_CONFIG_GET_CLOCK_SRC. Returns the counter channel’s current
clock source in data[1]. For internal clock sources, data[2] is set

Comedi 96 / 161

to the period in ns.

INSN_CONFIG_SET_GATE_SRC. Sets the counter channel’s gate source as
specified in data[2] (this is a hardware-specific value). Not
supported on PC214E. For the other boards, valid gate sources are 0
to 7 as follows:

0. VCC (internal +5V d.c.), i.e. gate permanently enabled.
1. GND (internal 0V d.c.), i.e. gate permanently disabled.
2. GAT n, the counter channel’s dedicated GAT input from the SK1

connector. (N.B. for other values, the counter channel’s GATn
pin on the SK1 connector is an output!)

3. /OUT n-2, the inverted output of counter channel n-2 (see note
2 below).

4. Reserved.
5. Reserved.
6. Reserved.
7. Reserved.

INSN_CONFIG_GET_GATE_SRC. Returns the counter channel’s current gate
source in data[2].

Clock and gate interconnection notes:

1. Clock source OUT n-1 is the output of the preceding channel on the
same counter subdevice if n > 0, or the output of channel 2 on the
preceding counter subdevice (see note 3) if n = 0.

2. Gate source /OUT n-2 is the inverted output of channel 0 on the
same counter subdevice if n = 2, or the inverted output of channel n+1
on the preceding counter subdevice (see note 3) if n < 2.

3. The counter subdevices are connected in a ring, so the highest
counter subdevice precedes the lowest.

The ’TIMER’ subdevice is a free-running 32-bit timer subdevice.

The ’INTERRUPT’ subdevice pretends to be a digital input subdevice. The
digital inputs come from the interrupt status register. The number of
channels matches the number of interrupt sources. The PC214E does not
have an interrupt status register; see notes on ’INTERRUPT SOURCES’
below.

INTERRUPT SOURCES

PC212E PC214E PC215E/PCI215
------------- ------------- -------------

Sources 6 1 6
0 PPI-X-C0 JUMPER-J5 PPI-X-C0
1 PPI-X-C3 PPI-X-C3
2 CTR-Y1-OUT1 PPI-Y-C0
3 CTR-Y2-OUT1 PPI-Y-C3
4 CTR-Z1-OUT1 CTR-Z1-OUT1
5 CTR-Z2-OUT1 CTR-Z2-OUT1

PCIe215 PC218E PCIe236
------------- ------------- -------------

Sources 6 6 6
0 PPI-X-C0 CTR-X1-OUT1 PPI-X-C0
1 PPI-X-C3 CTR-X2-OUT1 PPI-X-C3
2 PPI-Y-C0 CTR-Y1-OUT1 unused
3 PPI-Y-C3 CTR-Y2-OUT1 unused

Comedi 97 / 161

4 CTR-Z1-OUT1 CTR-Z1-OUT1 CTR-Z1-OUT1
5 CTR-Z2-OUT1 CTR-Z2-OUT1 CTR-Z2-OUT1

PC272E/PCI272 PCIe296
------------- -------------

Sources 6 6
0 PPI-X-C0 PPI-X1-C0
1 PPI-X-C3 PPI-X1-C3
2 PPI-Y-C0 PPI-Y1-C0
3 PPI-Y-C3 PPI-Y1-C3
4 PPI-Z-C0 CTR-Z1-OUT1
5 PPI-Z-C3 CTR-Z2-OUT1

When an interrupt source is enabled in the interrupt source enable
register, a rising edge on the source signal latches the corresponding
bit to 1 in the interrupt status register.

When the interrupt status register value as a whole (actually, just the
6 least significant bits) goes from zero to non-zero, the board will
generate an interrupt. For level-triggered hardware interrupts (PCI
card), the interrupt will remain asserted until the interrupt status
register is cleared to zero. For edge-triggered hardware interrupts
(ISA card), no further interrupts will occur until the interrupt status
register is cleared to zero. To clear a bit to zero in the interrupt
status register, the corresponding interrupt source must be disabled
in the interrupt source enable register (there is no separate interrupt
clear register).

The PC214E does not have an interrupt source enable register or an
interrupt status register; its ’INTERRUPT’ subdevice has a single
channel and its interrupt source is selected by the position of jumper
J5.

COMMANDS

The driver supports a read streaming acquisition command on the
’INTERRUPT’ subdevice. The channel list selects the interrupt sources
to be enabled. All channels will be sampled together (convert_src ==
TRIG_NOW). The scan begins a short time after the hardware interrupt
occurs, subject to interrupt latencies (scan_begin_src == TRIG_EXT,
scan_begin_arg == 0). The value read from the interrupt status register
is packed into a sampl_t value, one bit per requested channel, in the
order they appear in the channel list.

5.6.19 amplc_pc236 -- Amplicon PC36AT, PCI236

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PC36AT pc36at
Amplicon PCI236 pci236 or amplc_pc236

Comedi 98 / 161

Configuration options - PC36AT:
[0] - I/O port base address
[1] - IRQ (optional)

Configuration options - PCI236:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will be
used.

The PC36AT ISA board and PCI236 PCI board have a single 8255 appearing
as subdevice 0.

Subdevice 1 pretends to be a digital input device, but it always returns
0 when read. However, if you run a command with scan_begin_src=TRIG_EXT,
a rising edge on port C bit 3 acts as an external trigger, which can be
used to wake up tasks. This is like the comedi_parport device, but the
only way to physically disable the interrupt on the PC36AT is to remove
the IRQ jumper. If no interrupt is connected, then subdevice 1 is
unused.

5.6.20 amplc_pc263 -- Amplicon PC263, PCI263

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PC263 pc263
Amplicon PCI263 pci263 or amplc_pc263

Configuration options - PC263:
[0] - I/O port base address

Configuration options - PCI263:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will be
used.

Each board appears as one subdevice, with 16 digital outputs, each
connected to a reed-relay. Relay contacts are closed when output is 1.
The state of the outputs can be read.

5.6.21 amplc_pci224 -- Amplicon PCI224, PCI234

Author: Ian Abbott <abbotti@mev.co.uk>

Status: works, but see caveats

Comedi 99 / 161

Manufacturer Device Name
Amplicon PCI224 amplc_pci224 or pci224
Amplicon PCI234 amplc_pci224 or pci234

- ao_insn read/write
- ao_do_cmd mode with the following sources:

- start_src TRIG_INT TRIG_EXT
- scan_begin_src TRIG_TIMER TRIG_EXT
- convert_src TRIG_NOW
- scan_end_src TRIG_COUNT
- stop_src TRIG_COUNT TRIG_EXT TRIG_NONE

The channel list must contain at least one channel with no repeated
channels. The scan end count must equal the number of channels in
the channel list.

There is only one external trigger source so only one of start_src,
scan_begin_src or stop_src may use TRIG_EXT.

Configuration options - PCI224:
[0] - PCI bus of device (optional).
[1] - PCI slot of device (optional).

If bus/slot is not specified, the first available PCI device
will be used.

[2] - Select available ranges according to jumper LK1. All channels
are set to the same range:
0=Jumper position 1-2 (factory default), 4 software-selectable
internal voltage references, giving 4 bipolar and 4 unipolar
ranges:

[-10V,+10V], [-5V,+5V], [-2.5V,+2.5V], [-1.25V,+1.25V],
[0,+10V], [0,+5V], [0,+2.5V], [0,1.25V].

1=Jumper position 2-3, 1 external voltage reference, giving
1 bipolar and 1 unipolar range:
[-Vext,+Vext], [0,+Vext].

Configuration options - PCI234:
[0] - PCI bus of device (optional).
[1] - PCI slot of device (optional).

If bus/slot is not specified, the first available PCI device
will be used.

[2] - Select internal or external voltage reference according to
jumper LK1. This affects all channels:
0=Jumper position 1-2 (factory default), Vref=5V internal.
1=Jumper position 2-3, Vref=Vext external.

[3] - Select channel 0 range according to jumper LK2:
0=Jumper position 2-3 (factory default), range [-2*Vref,+2*Vref]
(10V bipolar when options[2]=0).

1=Jumper position 1-2, range [-Vref,+Vref]
(5V bipolar when options[2]=0).

[4] - Select channel 1 range according to jumper LK3: cf. options[3].
[5] - Select channel 2 range according to jumper LK4: cf. options[3].
[6] - Select channel 3 range according to jumper LK5: cf. options[3].

Passing a zero for an option is the same as leaving it unspecified.

1) All channels on the PCI224 share the same range. Any change to the
range as a result of insn_write or a streaming command will affect

Comedi 100 / 161

the output voltages of all channels, including those not specified
by the instruction or command.

2) For the analog output command, the first scan may be triggered
falsely at the start of acquisition. This occurs when the DAC scan
trigger source is switched from ’none’ to ’timer’ (scan_begin_src =
TRIG_TIMER) or ’external’ (scan_begin_src == TRIG_EXT) at the start
of acquisition and the trigger source is at logic level 1 at the
time of the switch. This is very likely for TRIG_TIMER. For
TRIG_EXT, it depends on the state of the external line and whether
the CR_INVERT flag has been set. The remaining scans are triggered
correctly.

5.6.22 amplc_pci230 -- Amplicon PCI230, PCI260 Multifunction I/O boards

Author: Allan Willcox <allanwillcox@ozemail.com.au>, Steve D Sharples <steve.sharples@nottingham.ac.uk>, Ian Abbott <ab-
botti@mev.co.uk>

Status: works

Manufacturer Device Name
Amplicon PCI230 pci230 or amplc_pci230
Amplicon PCI230+ pci230+ or amplc_pci230
Amplicon PCI260 pci260 or amplc_pci230
Amplicon PCI260+ pci260+ or amplc_pci230

Configuration options:
[0] - PCI bus of device (optional).
[1] - PCI slot of device (optional).

If bus/slot is not specified, the first available PCI device
will be used.

Configuring a "amplc_pci230" will match any supported card and it will
choose the best match, picking the "+" models if possible. Configuring
a "pci230" will match a PCI230 or PCI230+ card and it will be treated as
a PCI230. Configuring a "pci260" will match a PCI260 or PCI260+ card
and it will be treated as a PCI260. Configuring a "pci230+" will match
a PCI230+ card. Configuring a "pci260+" will match a PCI260+ card.

PCI230(+) PCI260(+)
--------- ---------

Subdevices 3 1
0 AI AI

1 AO
2 DIO

AI Subdevice:

The AI subdevice has 16 single-ended channels or 8 differential
channels.

The PCI230 and PCI260 cards have 12-bit resolution. The PCI230+ and
PCI260+ cards have 16-bit resolution.

Comedi 101 / 161

For differential mode, use inputs 2N and 2N+1 for channel N (e.g. use
inputs 14 and 15 for channel 7). If the card is physically a PCI230
or PCI260 then it actually uses a "pseudo-differential" mode where the
inputs are sampled a few microseconds apart. The PCI230+ and PCI260+
use true differential sampling. Another difference is that if the
card is physically a PCI230 or PCI260, the inverting input is 2N,
whereas for a PCI230+ or PCI260+ the inverting input is 2N+1. So if a
PCI230 is physically replaced by a PCI230+ (or a PCI260 with a
PCI260+) and differential mode is used, the differential inputs need
to be physically swapped on the connector.

The following input ranges are supported:

0 => [-10, +10] V
1 => [-5, +5] V
2 => [-2.5, +2.5] V
3 => [-1.25, +1.25] V
4 => [0, 10] V
5 => [0, 5] V
6 => [0, 2.5] V

AI Commands:

+=========+==============+===========+============+==========+
|start_src|scan_begin_src|convert_src|scan_end_src| stop_src |
+=========+==============+===========+============+==========+
TRIG_NOW	TRIG_FOLLOW	TRIG_TIMER	TRIG_COUNT	TRIG_NONE
TRIG_INT		TRIG_EXT(3)		TRIG_COUNT
		TRIG_INT		
	--------------	-----------		
	TRIG_TIMER(1)	TRIG_TIMER		
	TRIG_EXT(2)			
	TRIG_INT			
+---------+--------------+-----------+------------+----------+

Note 1: If AI command and AO command are used simultaneously, only
one may have scan_begin_src == TRIG_TIMER.

Note 2: For PCI230 and PCI230+, scan_begin_src == TRIG_EXT uses
DIO channel 16 (pin 49) which will need to be configured as
a digital input. For PCI260+, the EXTTRIG/EXTCONVCLK input
(pin 17) is used instead. For PCI230, scan_begin_src ==
TRIG_EXT is not supported. The trigger is a rising edge
on the input.

Note 3: For convert_src == TRIG_EXT, the EXTTRIG/EXTCONVCLK input
(pin 25 on PCI230(+), pin 17 on PCI260(+)) is used. The
convert_arg value is interpreted as follows:

convert_arg == (CR_EDGE | 0) => rising edge
convert_arg == (CR_EDGE | CR_INVERT | 0) => falling edge
convert_arg == 0 => falling edge (backwards compatibility)
convert_arg == 1 => rising edge (backwards compatibility)

All entries in the channel list must use the same analogue reference.
If the analogue reference is not AREF_DIFF (not differential) each
pair of channel numbers (0 and 1, 2 and 3, etc.) must use the same
input range. The input ranges used in the sequence must be all
bipolar (ranges 0 to 3) or all unipolar (ranges 4 to 6). The channel
sequence must consist of 1 or more identical subsequences. Within the
subsequence, channels must be in ascending order with no repeated

Comedi 102 / 161

channels. For example, the following sequences are valid: 0 1 2 3
(single valid subsequence), 0 2 3 5 0 2 3 5 (repeated valid
subsequence), 1 1 1 1 (repeated valid subsequence). The following
sequences are invalid: 0 3 2 1 (invalid subsequence), 0 2 3 5 0 2 3
(incompletely repeated subsequence). Some versions of the PCI230+ and
PCI260+ have a bug that requires a subsequence longer than one entry
long to include channel 0.

AO Subdevice:

The AO subdevice has 2 channels with 12-bit resolution.

The following output ranges are supported:

0 => [0, 10] V
1 => [-10, +10] V

AO Commands:

+=========+==============+===========+============+==========+
|start_src|scan_begin_src|convert_src|scan_end_src| stop_src |
+=========+==============+===========+============+==========+
TRIG_INT	TRIG_TIMER(1)	TRIG_NOW	TRIG_COUNT	TRIG_NONE
	TRIG_EXT(2)			TRIG_COUNT
	TRIG_INT			
+---------+--------------+-----------+------------+----------+

Note 1: If AI command and AO command are used simultaneously, only
one may have scan_begin_src == TRIG_TIMER.

Note 2: scan_begin_src == TRIG_EXT is only supported if the card is
configured as a PCI230+ and is only supported on later
versions of the card. As a card configured as a PCI230+ is
not guaranteed to support external triggering, please consider
this support to be a bonus. It uses the EXTTRIG/ EXTCONVCLK
input (PCI230+ pin 25). Triggering will be on the rising edge
unless the CR_INVERT flag is set in scan_begin_arg.

The channels in the channel sequence must be in ascending order with
no repeats. All entries in the channel sequence must use the same
output range.

DIO Subdevice:

The DIO subdevice is a 8255 chip providing 24 DIO channels. The DIO
channels are configurable as inputs or outputs in four groups:

Port A - channels 0 to 7
Port B - channels 8 to 15
Port CL - channels 16 to 19
Port CH - channels 20 to 23

Only mode 0 of the 8255 chip is supported.

Bit 0 of port C (DIO channel 16) is also used as an external scan
trigger input for AI commands on PCI230 and PCI230+, so would need to
be configured as an input to use it for that purpose.

Comedi 103 / 161

5.6.23 c6xdigio -- Mechatronic Systems Inc. C6x_DIGIO DSP daughter card

Author: Dan Block

Status: unknown

Manufacturer Device Name
Mechatronic Systems Inc. C6x_DIGIO DSP daughter card c6xdigio

This driver will not work with a 2.4 kernel.

5.6.24 cb_das16_cs -- Computer Boards PC-CARD DAS16/16

Author: ds

Status: experimental

Manufacturer Device Name
ComputerBoards PC-CARD DAS16/16 cb_das16_cs
ComputerBoards PC-CARD DAS16/16-AO cb_das16_cs

5.6.25 cb_pcidac -- Measurement Computing PCI Migration series boards

Author: Oliver Gause

Status: works

Manufacturer Device Name
ComputerBoards PCI-DAC6702 cb_pcidac
ComputerBoards PCI-DAC6703 cb_pcidac

Written to support the PCI-DAC6702. Trivially extended to support
the PCI-DAC6703, it has just 16 ao channels instead of 8.

Configuration Options:
[0] - PCI bus number
[1] - PCI slot number

Developed from cb_pcidas64, cb_pcimdas and skel. The register values are
taken from the register map of Measurement Computing.

Comedi 104 / 161

Supports DIO, AO in its present form.

5.6.26 cb_pcidas -- MeasurementComputing PCI-DAS series with the AMCC S5933 PCI controller

Author: Ivan Martinez <imr@oersted.dtu.dk>, Frank Mori Hess <fmhess@users.sourceforge.net>, Brice Dubost <braice@braice.net>

Status: There are many reports of the driver being used with most of the supported cards. Despite no detailed log is maintained,
it can be said that the driver is quite tested and stable.

Manufacturer Device Name
Measurement Computing PCI-DAS1602/16 cb_pcidas
Measurement Computing PCI-DAS1602/16jr cb_pcidas
Measurement Computing PCI-DAS1602/12 cb_pcidas
Measurement Computing PCI-DAS1200 cb_pcidas
Measurement Computing PCI-DAS1200jr cb_pcidas
Measurement Computing PCI-DAS1000 cb_pcidas
Measurement Computing PCI-DAS1001 cb_pcidas
Measurement Computing PCI_DAS1002 cb_pcidas

The boards may be autocalibrated using the comedi_calibrate
utility.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

For commands, the scanned channels must be consecutive
(i.e. 4-5-6-7, 2-3-4,...), and must all have the same
range and aref.

AI Triggering:
For start_src == TRIG_EXT, the A/D EXTERNAL TRIGGER IN (pin 45) is used.
For 1602 series, the start_arg is interpreted as follows:
start_arg == 0 => gated triger (level high)
start_arg == CR_INVERT => gated triger (level low)
start_arg == CR_EDGE => Rising edge
start_arg == CR_EDGE | CR_INVERT => Falling edge

For the other boards the trigger will be done on rising edge

5.6.27 cb_pcidas64 -- MeasurementComputing PCI-DAS64xx, 60XX, and 4020 series with the PLX 9080 PCI controller

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Comedi 105 / 161

Manufacturer Device Name
Measurement Computing PCI-DAS6402/16 cb_pcidas64
Measurement Computing PCI-DAS6402/12 cb_pcidas64
Measurement Computing PCI-DAS64/M1/16 cb_pcidas64
Measurement Computing PCI-DAS64/M2/16 cb_pcidas64
Measurement Computing PCI-DAS64/M3/16 cb_pcidas64
Measurement Computing PCI-DAS6402/16/JR cb_pcidas64
Measurement Computing PCI-DAS64/M1/16/JR cb_pcidas64
Measurement Computing PCI-DAS64/M2/16/JR cb_pcidas64
Measurement Computing PCI-DAS64/M3/16/JR cb_pcidas64
Measurement Computing PCI-DAS64/M1/14 cb_pcidas64
Measurement Computing PCI-DAS64/M2/14 cb_pcidas64
Measurement Computing PCI-DAS64/M3/14 cb_pcidas64
Measurement Computing PCI-DAS6013 cb_pcidas64
Measurement Computing PCI-DAS6014 cb_pcidas64
Measurement Computing PCI-DAS6023 cb_pcidas64
Measurement Computing PCI-DAS6025 cb_pcidas64
Measurement Computing PCI-DAS6030 cb_pcidas64
Measurement Computing PCI-DAS6031 cb_pcidas64
Measurement Computing PCI-DAS6032 cb_pcidas64
Measurement Computing PCI-DAS6033 cb_pcidas64
Measurement Computing PCI-DAS6034 cb_pcidas64
Measurement Computing PCI-DAS6035 cb_pcidas64
Measurement Computing PCI-DAS6036 cb_pcidas64
Measurement Computing PCI-DAS6040 cb_pcidas64
Measurement Computing PCI-DAS6052 cb_pcidas64
Measurement Computing PCI-DAS6070 cb_pcidas64
Measurement Computing PCI-DAS6071 cb_pcidas64
Measurement Computing PCI-DAS4020/12 cb_pcidas64

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

These boards may be autocalibrated with the comedi_calibrate utility.

To select the bnc trigger input on the 4020 (instead of the dio input),
specify a nonzero channel in the chanspec. If you wish to use an external
master clock on the 4020, you may do so by setting the scan_begin_src
to TRIG_OTHER, and using an INSN_CONFIG_TIMER_1 configuration insn
to configure the divisor to use for the external clock.

Some devices are not identified because the PCI device IDs are not yet
known. If you have such a board, please file a bug report at

5.6.28 cb_pcidda -- MeasurementComputing PCI-DDA series

Author: Ivan Martinez <ivanmr@altavista.com>, Frank Mori Hess <fmhess@users.sourceforge.net>

Status: Supports 08/16, 04/16, 02/16, 08/12, 04/12, and 02/12

Comedi 106 / 161

Manufacturer Device Name
Measurement Computing PCI-DDA08/12 cb_pcidda
Measurement Computing PCI-DDA04/12 cb_pcidda
Measurement Computing PCI-DDA02/12 cb_pcidda
Measurement Computing PCI-DDA08/16 cb_pcidda
Measurement Computing PCI-DDA04/16 cb_pcidda
Measurement Computing PCI-DDA02/16 cb_pcidda

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI
device will be used.

Only simple analog output writing is supported.

So far it has only been tested with:
- PCI-DDA08/12

Please report success/failure with other different cards to
<comedi@comedi.org>.

5.6.29 cb_pcidio -- ComputerBoards’ DIO boards with PCI interface

Author: Yoshiya Matsuzaka

Status: experimental

Manufacturer Device Name
Measurement Computing PCI-DIO24 cb_pcidio
Measurement Computing PCI-DIO24H cb_pcidio
Measurement Computing PCI-DIO48H cb_pcidio

This driver has been modified from skel.c of comedi-0.7.70.

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first available PCI device will
be used.

Passing a zero for an option is the same as leaving it unspecified.

5.6.30 cb_pcimdas -- Measurement Computing PCI Migration series boards

Author: Richard Bytheway

Comedi 107 / 161

Status: experimental

Manufacturer Device Name
ComputerBoards PCIM-DAS1602/16 cb_pcimdas
ComputerBoards PCIe-DAS1602/16 cb_pcimdas

Written to support the PCIM-DAS1602/16 and PCIe-DAS1602/16.

Configuration Options:
[0] - PCI bus number
[1] - PCI slot number

Developed from cb_pcidas and skel by Richard Bytheway (mocelet@sucs.org).
Only supports DIO, AO and simple AI in it’s present form.
No interrupts, multi channel or FIFO AI, although the card looks like it could
support this.

5.6.31 cb_pcimdda -- Measurement Computing PCIM-DDA06-16

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Measurement Computing PCIM-DDA06-16 cb_pcimdda

All features of the PCIM-DDA06-16 board are supported. This board
has 6 16-bit AO channels, and the usual 8255 DIO setup. (24 channels,
configurable in banks of 8 and 4, etc.). This board does not support commands.

The board has a peculiar way of specifying AO gain/range settings -- You have
1 jumper bank on the card, which either makes all 6 AO channels either
5 Volt unipolar, 5V bipolar, 10 Volt unipolar or 10V bipolar.

Since there is absolutely _no_ way to tell in software how this jumper is set
(well, at least according to the rather thin spec. from Measurement Computing
that comes with the board), the driver assumes the jumper is at its factory

default setting of +/-5V.

Also of note is the fact that this board features another jumper, whose
state is also completely invisible to software. It toggles two possible AO
output modes on the board:

- Update Mode: Writing to an AO channel instantaneously updates the actual
signal output by the DAC on the board (this is the factory default).

- Simultaneous XFER Mode: Writing to an AO channel has no effect until
you read from any one of the AO channels. This is useful for loading
all 6 AO values, and then reading from any one of the AO channels on the
device to instantly update all 6 AO values in unison. Useful for some
control apps, I would assume? If your jumper is in this setting, then you
need to issue your comedi_data_write()s to load all the values you want,

Comedi 108 / 161

then issue one comedi_data_read() on any channel on the AO subdevice
to initiate the simultaneous XFER.

Configuration Options:
[0] PCI bus (optional)
[1] PCI slot (optional)
[2] analog output range jumper setting

0 == +/- 5 V
1 == +/- 10 V

5.6.32 comedi_bond -- A driver to ’bond’ (merge) multiple subdevices from multiple devices together as one.

Author: ds

Status: works

This driver allows you to ’bond’ (merge) multiple comedi subdevices
(coming from possibly difference boards and/or drivers) together. For
example, if you had a board with 2 different DIO subdevices, and
another with 1 DIO subdevice, you could ’bond’ them with this driver
so that they look like one big fat DIO subdevice. This makes writing
applications slightly easier as you don’t have to worry about managing
different subdevices in the application -- you just worry about
indexing one linear array of channel id’s.

Right now only DIO subdevices are supported as that’s the personal itch
I am scratching with this driver. If you want to add support for AI and AO
subdevs, go right on ahead and do so!

Commands aren’t supported -- although it would be cool if they were.

Configuration Options:
List of comedi-minors to bond. All subdevices of the same type
within each minor will be concatenated together in the order given here.

5.6.33 comedi_parport -- Standard PC parallel port

Author: ds

Status: works in immediate mode

Manufacturer Device Name
standard parallel port comedi_parport

A cheap and easy way to get a few more digital I/O lines. Steal
additional parallel ports from old computers or your neighbors’
computers.

Comedi 109 / 161

Option list:
0: I/O port base for the parallel port.
1: IRQ

Parallel Port Lines:

pin subdev chan aka
--- ------ ---- ---
1 2 0 strobe
2 0 0 data 0
3 0 1 data 1
4 0 2 data 2
5 0 3 data 3
6 0 4 data 4
7 0 5 data 5
8 0 6 data 6
9 0 7 data 7
10 1 3 acknowledge
11 1 4 busy
12 1 2 output
13 1 1 printer selected
14 2 1 auto LF
15 1 0 error
16 2 2 init
17 2 3 select printer
18-25 ground

Subdevices 0 is digital I/O, subdevice 1 is digital input, and
subdevice 2 is digital output. Unlike other Comedi devices,
subdevice 0 defaults to output.

Pins 13 and 14 are inverted once by Comedi and once by the
hardware, thus cancelling the effect.

Pin 1 is a strobe, thus acts like one. There’s no way in software
to change this, at least on a standard parallel port.

Subdevice 3 pretends to be a digital input subdevice, but it always
returns 0 when read. However, if you run a command with
scan_begin_src=TRIG_EXT, it uses pin 10 as a external triggering
pin, which can be used to wake up tasks.

5.6.34 comedi_rt_timer -- Command emulator using real-time tasks

Author: ds, fmhess

Status: works

This driver requires RTAI or RTLinux to work correctly. It doesn’t
actually drive hardware directly, but calls other drivers and uses
a real-time task to emulate commands for drivers and devices that
are incapable of native commands. Thus, you can get accurately
timed I/O on any device.

Since the timing is all done in software, sampling jitter is much

Comedi 110 / 161

higher than with a device that has an on-board timer, and maximum
sample rate is much lower.

Configuration options:
[0] - minor number of device you wish to emulate commands for
[1] - subdevice number you wish to emulate commands for

5.6.35 comedi_test -- generates fake waveforms

Author: Joachim Wuttke <Joachim.Wuttke@icn.siemens.de>, Frank Mori Hess <fmhess@users.sourceforge.net>, ds

Status: works

This driver is mainly for testing purposes, but can also be used to
generate sample waveforms on systems that don’t have data acquisition
hardware.

Configuration options:
[0] - Amplitude in microvolts for fake waveforms (default 1 volt)
[1] - Period in microseconds for fake waveforms (default 0.1 sec)

Generates a sawtooth wave on channel 0, square wave on channel 1, additional
waveforms could be added to other channels (currently they return flatline
zero volts).

5.6.36 contec_fit -- Contec F&eIT series modules

Author: Contec Co., Ltd.

Status: works

Manufacturer Device Name
Contec GY contec_fit
Contec GY FIT
Contec GY FIT

Configuration Options:
[0] - DeviceID of module (optional)
If DeviceID is not specified, DeviceID 0 will be used.

Comedi 111 / 161

5.6.37 contec_pci_dio -- Contec PIO1616L digital I/O board

Author: Stefano Rivoir <s.rivoir@gts.it>

Status: works

Manufacturer Device Name
Contec PIO1616L contec_pci_dio

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

5.6.38 daqboard2000 -- IOTech DAQBoard/2000

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
IOTech DAQBoard/2000 daqboard2000

Much of the functionality of this driver was determined from reading
the source code for the Windows driver.

The FPGA on the board requires initialization code, which can
be loaded by comedi_config using the -i
option. The initialization code is available from http://www.comedi.org
in the comedi_nonfree_firmware tarball.

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

5.6.39 das08 -- DAS-08 compatible boards

Author: Warren Jasper, ds, Frank Hess

Status: works

Manufacturer Device Name
Keithley Metrabyte DAS08 isa-das08
ComputerBoards DAS08 isa-das08

Comedi 112 / 161

Manufacturer Device Name
ComputerBoards DAS08-PGM das08-pgm
ComputerBoards DAS08-PGH das08-pgh
ComputerBoards DAS08-PGL das08-pgl
ComputerBoards DAS08-AOH das08-aoh
ComputerBoards DAS08-AOL das08-aol
ComputerBoards DAS08-AOM das08-aom
ComputerBoards DAS08/JR-AO das08/jr-ao
ComputerBoards DAS08/JR-16-AO das08jr-16-ao
ComputerBoards PCI-DAS08 das08
ComputerBoards PC104-DAS08 pc104-das08
ComputerBoards DAS08/JR/16 das08jr/16

This is a rewrite of the das08 and das08jr drivers.

Options (for ISA cards):
[0] - base io address

Options (for pci-das08):
[0] - bus (optional)
[1] = slot (optional)

The das08 driver doesn’t support asynchronous commands, since
the cheap das08 hardware doesn’t really support them. The
comedi_rt_timer driver can be used to emulate commands for this
driver.

5.6.40 das08_cs -- DAS-08 PCMCIA boards

Author: Warren Jasper, ds, Frank Hess

Status: works

Manufacturer Device Name
ComputerBoards PCM-DAS08 pcm-das08

This is the PCMCIA-specific support split off from the
das08 driver.

Options (for pcm-das08):
NONE

Command support does not exist, but could be added for this board.

Comedi 113 / 161

5.6.41 das16 -- DAS16 compatible boards

Author: Sam Moore, Warren Jasper, ds, Chris Baugher, Frank Hess, Roman Fietze

Status: works

Manufacturer Device Name
Keithley Metrabyte DAS-16 das-16
Keithley Metrabyte DAS-16G das-16g
Keithley Metrabyte DAS-16F das-16f
Keithley Metrabyte DAS-1201 das-1201
Keithley Metrabyte DAS-1202 das-1202
Keithley Metrabyte DAS-1401 das-1401
Keithley Metrabyte DAS-1402 das-1402
Keithley Metrabyte DAS-1601 das-1601
Keithley Metrabyte DAS-1602 das-1602
ComputerBoards PC104-DAS16/JR pc104-das16jr
ComputerBoards PC104-DAS16JR/16 pc104-das16jr/16
ComputerBoards CIO-DAS16JR/16 cio-das16jr/16
ComputerBoards CIO-DAS16/JR cio-das16/jr
ComputerBoards CIO-DAS1401/12 cio-das1401/12
ComputerBoards CIO-DAS1402/12 cio-das1402/12
ComputerBoards CIO-DAS1402/16 cio-das1402/16
ComputerBoards CIO-DAS1601/12 cio-das1601/12
ComputerBoards CIO-DAS1602/12 cio-das1602/12
ComputerBoards CIO-DAS1602/16 cio-das1602/16
ComputerBoards CIO-DAS16/330 cio-das16/330

A rewrite of the das16 and das1600 drivers.

Passing a zero for an option is the same as leaving it unspecified.

5.6.42 das16m1 -- CIO-DAS16/M1

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
Measurement Computing CIO-DAS16/M1 cio-das16/m1

This driver supports a single board - the CIO-DAS16/M1.
As far as I know, there are no other boards that have
the same register layout. Even the CIO-DAS16/M1/16 is
significantly different.

I was _barely_ able to reach the full 1 MHz capability
of this board, using a hard real-time interrupt
(set the TRIG_RT flag in your comedi_cmd and use
rtlinux or RTAI). The board can’t do dma, so the bottleneck is

Comedi 114 / 161

pulling the data across the ISA bus. I timed the interrupt
handler, and it took my computer ~470 microseconds to pull 512
samples from the board. So at 1 Mhz sampling rate,
expect your CPU to be spending almost all of its
time in the interrupt handler.

This board has some unusual restrictions for its channel/gain list. If the
list has 2 or more channels in it, then two conditions must be satisfied:
(1) - even/odd channels must appear at even/odd indices in the list
(2) - the list must have an even number of entries.

irq can be omitted, although the cmd interface will not work without it.

5.6.43 das1800 -- Keithley Metrabyte DAS1800 (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
Keithley Metrabyte DAS-1701ST das-1701st
Keithley Metrabyte DAS-1701ST-DA das-1701st-da
Keithley Metrabyte DAS-1701/AO das-1701ao
Keithley Metrabyte DAS-1702ST das-1702st
Keithley Metrabyte DAS-1702ST-DA das-1702st-da
Keithley Metrabyte DAS-1702HR das-1702hr
Keithley Metrabyte DAS-1702HR-DA das-1702hr-da
Keithley Metrabyte DAS-1702/AO das-1702ao
Keithley Metrabyte DAS-1801ST das-1801st
Keithley Metrabyte DAS-1801ST-DA das-1801st-da
Keithley Metrabyte DAS-1801HC das-1801hc
Keithley Metrabyte DAS-1801AO das-1801ao
Keithley Metrabyte DAS-1802ST das-1802st
Keithley Metrabyte DAS-1802ST-DA das-1802st-da
Keithley Metrabyte DAS-1802HR das-1802hr
Keithley Metrabyte DAS-1802HR-DA das-1802hr-da
Keithley Metrabyte DAS-1802HC das-1802hc
Keithley Metrabyte DAS-1802AO das-1802ao

The waveform analog output on the ’ao’ cards is not supported.
If you need it, send me (Frank Hess) an email.

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMA0 (optional, requires irq)
[3] - DMA1 (optional, requires irq and dma0)

Comedi 115 / 161

5.6.44 das6402 -- Keithley Metrabyte DAS6402 (& compatibles)

Author: Oystein Svendsen <svendsen@pvv.org>

Status: bitrotten

Manufacturer Device Name
Keithley Metrabyte DAS6402 das6402

This driver has suffered bitrot.

5.6.45 das800 -- Keithley Metrabyte DAS800 (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works, cio-das802/16 untested - email me if you have tested it

Manufacturer Device Name
Keithley Metrabyte DAS-800 das-800
Keithley Metrabyte DAS-801 das-801
Keithley Metrabyte DAS-802 das-802
Measurement Computing CIO-DAS800 cio-das800
Measurement Computing CIO-DAS801 cio-das801
Measurement Computing CIO-DAS802 cio-das802
Measurement Computing CIO-DAS802/16 cio-das802/16

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)

All entries in the channel/gain list must use the same gain and be
consecutive channels counting upwards in channel number (these are
hardware limitations.)

I’ve never tested the gain setting stuff since I only have a
DAS-800 board with fixed gain.

The cio-das802/16 does not have a fifo-empty status bit! Therefore
only fifo-half-full transfers are possible with this card.

5.6.46 dmm32at -- Diamond Systems mm32at driver.

Author: Perry J. Piplani <perry.j.piplani@nasa.gov>

Status: experimental

Comedi 116 / 161

This driver is for the Diamond Systems MM-32-AT board

Configuration Options:
comedi_config /dev/comedi0 dmm32at baseaddr,irq

5.6.47 dt2801 -- Data Translation DT2801 series and DT01-EZ

Author: ds

Status: works

Manufacturer Device Name
Data Translation DT2801 dt2801
Data Translation DT2801-A dt2801
Data Translation DT2801/5716A dt2801
Data Translation DT2805 dt2801
Data Translation DT2805/5716A dt2801
Data Translation DT2808 dt2801
Data Translation DT2818 dt2801
Data Translation DT2809 dt2801
Data Translation DT01-EZ dt2801

This driver can autoprobe the type of board.

Configuration options:
[0] - I/O port base address
[1] - unused
[2] - A/D reference 0=differential, 1=single-ended
[3] - A/D range

0 = [-10,10]
1 = [0,10]

[4] - D/A 0 range
0 = [-10,10]

1 = [-5,5]
2 = [-2.5,2.5]
3 = [0,10]
4 = [0,5]

[5] - D/A 1 range (same choices)

5.6.48 dt2811 -- Data Translation DT2811

Author: ds

Status: works

Manufacturer Device Name
Data Translation DT2811-PGL dt2811-pgl

Comedi 117 / 161

Manufacturer Device Name
Data Translation DT2811-PGH dt2811-pgh

Configuration options:
[0] - I/O port base address
[1] - IRQ, although this is currently unused
[2] - A/D reference

0 = single-ended
1 = differential

2 = pseudo-differential (common reference)
[3] - A/D range

0 = [-5,5]
1 = [-2.5,2.5]
2 = [0,5]

[4] - D/A 0 range (same choices)
[4] - D/A 1 range (same choices)

5.6.49 dt2814 -- Data Translation DT2814

Author: ds

Status: complete

Manufacturer Device Name
Data Translation DT2814 dt2814

Configuration options:
[0] - I/O port base address
[1] - IRQ

This card has 16 analog inputs multiplexed onto a 12 bit ADC. There
is a minimally useful onboard clock. The base frequency for the
clock is selected by jumpers, and the clock divider can be selected
via programmed I/O. Unfortunately, the clock divider can only be
a power of 10, from 1 to 10^7, of which only 3 or 4 are useful. In
addition, the clock does not seem to be very accurate.

5.6.50 dt2815 -- Data Translation DT2815

Author: ds

Status: mostly complete, untested

Manufacturer Device Name
Data Translation DT2815 dt2815

Comedi 118 / 161

I’m not sure anyone has ever tested this board. If you have information
contrary, please update.

Configuration options:
[0] - I/O port base base address
[1] - IRQ (unused)
[2] - Voltage unipolar/bipolar configuration

0 == unipolar 5V (0V -- +5V)
1 == bipolar 5V (-5V -- +5V)

[3] - Current offset configuration
0 == disabled (0mA -- +32mAV)
1 == enabled (+4mA -- +20mAV)

[4] - Firmware program configuration
0 == program 1 (see manual table 5-4)
1 == program 2 (see manual table 5-4)
2 == program 3 (see manual table 5-4)
3 == program 4 (see manual table 5-4)

[5] - Analog output 0 range configuration
0 == voltage
1 == current

[6] - Analog output 1 range configuration (same options)
[7] - Analog output 2 range configuration (same options)
[8] - Analog output 3 range configuration (same options)
[9] - Analog output 4 range configuration (same options)
[10] - Analog output 5 range configuration (same options)
[11] - Analog output 6 range configuration (same options)
[12] - Analog output 7 range configuration (same options)

5.6.51 dt2817 -- Data Translation DT2817

Author: ds

Status: complete

Manufacturer Device Name
Data Translation DT2817 dt2817

A very simple digital I/O card. Four banks of 8 lines, each bank
is configurable for input or output. One wonders why it takes a
50 page manual to describe this thing.

The driver (which, btw, is much less than 50 pages) has 1 subdevice
with 32 channels, configurable in groups of 8.

Configuration options:
[0] - I/O port base base address

Comedi 119 / 161

5.6.52 dt282x -- Data Translation DT2821 series (including DT-EZ)

Author: ds

Status: complete

Manufacturer Device Name
Data Translation DT2821 dt2821
Data Translation DT2821-F-16SE dt2821-f
Data Translation DT2821-F-8DI dt2821-f
Data Translation DT2821-G-16SE dt2821-f
Data Translation DT2821-G-8DI dt2821-g
Data Translation DT2823 dt2823
Data Translation DT2824-PGH dt2824-pgh
Data Translation DT2824-PGL dt2824-pgl
Data Translation DT2825 dt2825
Data Translation DT2827 dt2827
Data Translation DT2828 dt2828
Data Translation DT21-EZ dt21-ez
Data Translation DT23-EZ dt23-ez
Data Translation DT24-EZ dt24-ez
Data Translation DT24-EZ-PGL dt24-ez-pgl

Configuration options:
[0] - I/O port base address
[1] - IRQ
[2] - DMA 1
[3] - DMA 2
[4] - AI jumpered for 0=single ended, 1=differential
[5] - AI jumpered for 0=straight binary, 1=2’s complement
[6] - AO 0 jumpered for 0=straight binary, 1=2’s complement
[7] - AO 1 jumpered for 0=straight binary, 1=2’s complement
[8] - AI jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5]
[9] - AO 0 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5],

4=[-2.5,2.5]
[10]- A0 1 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5],

4=[-2.5,2.5]

5.6.53 dt3000 -- Data Translation DT3000 series

Author: ds

Status: works

Manufacturer Device Name
Data Translation DT3001 dt3000
Data Translation DT3001-PGL dt3000
Data Translation DT3002 dt3000
Data Translation DT3003 dt3000
Data Translation DT3003-PGL dt3000
Data Translation DT3004 dt3000

Comedi 120 / 161

Manufacturer Device Name
Data Translation DT3005 dt3000
Data Translation DT3004-200 dt3000

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

There is code to support AI commands, but it may not work.

AO commands are not supported.

5.6.54 dt9812 -- Data Translation DT9812 USB module

Author: anders.blomdell@control.lth.se (Anders Blomdell)

Status: in development

Manufacturer Device Name
Data Translation DT9812 dt9812

This driver works, but bulk transfers not implemented. Might be a starting point
for someone else. I found out too late that USB has too high latencies (>1 ms)
for my needs.

5.6.55 fl512 -- unknown

Author: Anders Gnistrup <ex18@kalman.iau.dtu.dk>

Status: unknown

Manufacturer Device Name
unknown FL512 fl512

Digital I/O is not supported.

Configuration options:
[0] - I/O port base address

Comedi 121 / 161

5.6.56 gsc_hpdi -- General Standards Corporation High Speed Parallel Digital Interface rs485 boards

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: only receive mode works, transmit not supported

Manufacturer Device Name
General Standards Corporation PCI-HPDI32 gsc_hpdi
General Standards Corporation PMC-HPDI32 gsc_hpdi

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)

There are some additional hpdi models available from GSC for which
support could be added to this driver.

5.6.57 icp_multi -- Inova ICP_MULTI

Author: Anne Smorthit <anne.smorthit@sfwte.ch>

Status: works

Manufacturer Device Name
Inova ICP_MULTI icp_multi

The driver works for analog input and output and digital input and output.
It does not work with interrupts or with the counters. Currently no support
for DMA.

It has 16 single-ended or 8 differential Analogue Input channels with 12-bit
resolution. Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA. Input
ranges can be individually programmed for each channel. Voltage or current
measurement is selected by jumper.

There are 4 x 12-bit Analogue Outputs. Ranges : 5V, 10V, +/-5V, +/-10V

16 x Digital Inputs, 24V

8 x Digital Outputs, 24V, 1A

4 x 16-bit counters

Comedi 122 / 161

5.6.58 ii_pci20kc -- Intelligent Instruments PCI-20001C carrier board

Author: Markus Kempf <kempf@matsci.uni-sb.de>

Status: works

Manufacturer Device Name
Intelligent Instrumentation PCI-20001C ii_pci20kc

Supports the PCI-20001 C-2a Carrier board, and could probably support
the other carrier boards with small modifications. Modules supported

options for PCI-20006M:
first: Analog output channel 0 range configuration

0 bipolar 10 (-10V -- +10V)
1 unipolar 10 (0V -- +10V)
2 bipolar 5 (-5V -- 5V)

second: Analog output channel 1 range configuration

options for PCI-20341M:
first: Analog input gain configuration

0 1
1 10
2 100
3 200

5.6.59 jr3_pci -- JR3/PCI force sensor board

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
JR3 PCI force sensor board jr3_pci

The DSP on the board requires initialization code, which can
be loaded by placing it in /lib/firmware/comedi.
The initialization code should be somewhere on the media you got
with your card. One version is available from http://www.comedi.org
in the comedi_nonfree_firmware tarball.

Configuration options:
[0] - PCI bus number - if bus number and slot number are 0,

then driver search for first unused card
[1] - PCI slot number

Comedi 123 / 161

5.6.60 ke_counter -- Driver for Kolter Electronic Counter Card

Author: Michael Hillmann

Status: tested

Manufacturer Device Name
Kolter Electronic PCI Counter Card ke_counter

Configuration Options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

This driver is a simple driver to read the counter values from
Kolter Electronic PCI Counter Card.

5.6.61 me4000 -- Meilhaus ME-4000 series boards

Author: gg (Guenter Gebhardt <g.gebhardt@meilhaus.com>)

Status: broken (no support for loading firmware)

Manufacturer Device Name
Meilhaus ME-4650 me4000
Meilhaus ME-4670i me4000
Meilhaus ME-4680 me4000
Meilhaus ME-4680i me4000
Meilhaus ME-4680is me4000

- Analog Input
- Analog Output
- Digital I/O
- Counter

Configuration Options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

The firmware required by these boards is available in the
comedi_nonfree_firmware tarball available from

Comedi 124 / 161

5.6.62 me_daq -- Meilhaus PCI data acquisition cards

Author: Michael Hillmann <hillmann@syscongroup.de>

Status: experimental

Manufacturer Device Name
Meilhaus ME-2600i me_daq
Meilhaus ME-2000i me_daq

Analog Output

Configuration options:

[0] - PCI bus number (optional)
[1] - PCI slot number (optional)

If bus/slot is not specified, the first available PCI
device will be used.

The 2600 requires a firmware upload, which can be accomplished
using the -i or --init-data option of comedi_config.
The firmware can be
found in the comedi_nonfree_firmware tarball available
from http://www.comedi.org

5.6.63 mpc624 -- Micro/sys MPC-624 PC/104 board

Author: Stanislaw Raczynski <sraczynski@op.pl>

Status: working

Manufacturer Device Name
Micro/sys MPC-624 mpc624

The Micro/sys MPC-624 board is based on the LTC2440 24-bit sigma-delta
ADC chip.

Subdevices supported by the driver:
- Analog In: supported
- Digital I/O: not supported
- LEDs: not supported
- EEPROM: not supported

Configuration Options:
[0] - I/O base address
[1] - convertion rate

Convertion rate RMS noise Effective Number Of Bits
0 3.52kHz 23uV 17

Comedi 125 / 161

1 1.76kHz 3.5uV 20
2 880Hz 2uV 21.3
3 440Hz 1.4uV 21.8
4 220Hz 1uV 22.4
5 110Hz 750uV 22.9
6 55Hz 510nV 23.4
7 27.5Hz 375nV 24
8 13.75Hz 250nV 24.4
9 6.875Hz 200nV 24.6

[2] - voltage range
0 -1.01V .. +1.01V
1 -10.1V .. +10.1V

5.6.64 mpc8260cpm -- MPC8260 CPM module generic digital I/O lines

Author: ds

Status: experimental

Manufacturer Device Name
Motorola MPC8260 CPM mpc8260cpm

This driver is specific to the Motorola MPC8260 processor, allowing
you to access the processor’s generic digital I/O lines.

It is apparently missing some code.

5.6.65 multiq3 -- Quanser Consulting MultiQ-3

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
Quanser Consulting MultiQ-3 multiq3

5.6.66 ni_6527 -- National Instruments 6527

Author: ds

Status: works

Comedi 126 / 161

Manufacturer Device Name
National Instruments PCI-6527 ni6527
National Instruments PXI-6527 ni6527

5.6.67 ni_65xx -- National Instruments 65xx static dio boards

Author: Jon Grierson <jd@renko.co.uk>, Frank Mori Hess <fmhess@users.sourceforge.net>

Status: testing

Manufacturer Device Name
National Instruments PCI-6509 ni_65xx
National Instruments PXI-6509 ni_65xx
National Instruments PCI-6510 ni_65xx
National Instruments PCI-6511 ni_65xx
National Instruments PXI-6511 ni_65xx
National Instruments PCI-6512 ni_65xx
National Instruments PXI-6512 ni_65xx
National Instruments PCI-6513 ni_65xx
National Instruments PXI-6513 ni_65xx
National Instruments PCI-6514 ni_65xx
National Instruments PXI-6514 ni_65xx
National Instruments PCI-6515 ni_65xx
National Instruments PXI-6515 ni_65xx
National Instruments PCI-6516 ni_65xx
National Instruments PCI-6517 ni_65xx
National Instruments PCI-6518 ni_65xx
National Instruments PCI-6519 ni_65xx
National Instruments PCI-6520 ni_65xx
National Instruments PCI-6521 ni_65xx
National Instruments PXI-6521 ni_65xx
National Instruments PCI-6528 ni_65xx
National Instruments PXI-6528 ni_65xx

Based on the PCI-6527 driver by ds.
The interrupt subdevice (subdevice 3) is probably broken for all boards
except maybe the 6514.

5.6.68 ni_660x -- National Instruments 660x counter/timer boards

Author: J.P. Mellor <jpmellor@rose-hulman.edu>, Herman.Bruyninckx@mech.kuleuven.ac.be, Wim.Meeussen@mech.kuleuven.ac.be,
Klaas.Gadeyne@mech.kuleuven.ac.be, Frank Mori Hess <fmhess@users.sourceforge.net>

Comedi 127 / 161

Status: experimental

Manufacturer Device Name
National Instruments PCI-6601 ni_660x
National Instruments PCI-6602 ni_660x
National Instruments PXI-6602 ni_660x
National Instruments PXI-6608 ni_660x
National Instruments PCI-6624 ni_660x
National Instruments PXI-6624 ni_660x

Encoders work. PulseGeneration (both single pulse and pulse train)
works. Buffered commands work for input but not output.

5.6.69 ni_670x -- National Instruments 670x

Author: Bart Joris <bjoris@advalvas.be>

Status: unknown

Manufacturer Device Name
National Instruments PCI-6703 ni_670x
National Instruments PCI-6704 ni_670x

Commands are not supported.

5.6.70 ni_at_a2150 -- National Instruments AT-A2150

Author: Frank Mori Hess

Status: works

Manufacturer Device Name
National Instruments AT-A2150C at_a2150c
National Instruments AT-2150S at_a2150s

If you want to ac couple the board’s inputs, use AREF_OTHER.

Configuration options:
[0] - I/O port base address
[1] - IRQ (optional, required for timed conversions)
[2] - DMA (optional, required for timed conversions)

Comedi 128 / 161

5.6.71 ni_at_ao -- National Instruments AT-AO-6/10

Author: ds

Status: should work

Manufacturer Device Name
National Instruments AT-AO-6 at-ao-6
National Instruments AT-AO-10 at-ao-10

Configuration options:
[0] - I/O port base address
[1] - IRQ (unused)
[2] - DMA (unused)
[3] - analog output range, set by jumpers on hardware (0 for -10 to 10V bipolar, 1 for 0V ←↩

to 10V unipolar)

5.6.72 ni_atmio -- National Instruments AT-MIO-E series

Author: ds

Status: works

Manufacturer Device Name
National Instruments AT-MIO-16E-1 ni_atmio
National Instruments AT-MIO-16E-2 ni_atmio
National Instruments AT-MIO-16E-10 ni_atmio
National Instruments AT-MIO-16DE-10 ni_atmio
National Instruments AT-MIO-64E-3 ni_atmio
National Instruments AT-MIO-16XE-50 ni_atmio
National Instruments AT-MIO-16XE-10 ni_atmio
National Instruments AT-AI-16XE-10 ni_atmio

The driver has 2.6 kernel isapnp support, and
will automatically probe for a supported board if the
I/O base is left unspecified with comedi_config.
However, many of
the isapnp id numbers are unknown. If your board is not
recognized, please send the output of ’cat /proc/isapnp’
(you may need to modprobe the isa-pnp module for
/proc/isapnp to exist) so the
id numbers for your board can be added to the driver.

Comedi 129 / 161

Otherwise, you can use the isapnptools package to configure
your board. Use isapnp to
configure the I/O base and IRQ for the board, and then pass
the same values as
parameters in comedi_config. A sample isapnp.conf file is included
in the etc/ directory of Comedilib.

Comedilib includes a utility to autocalibrate these boards. The
boards seem to boot into a state where the all calibration DACs
are at one extreme of their range, thus the default calibration
is terrible. Calibration at boot is strongly encouraged.

To use the extended digital I/O on some of the boards, enable the
8255 driver when configuring the Comedi source tree.

External triggering is supported for some events. The channel index
(scan_begin_arg, etc.) maps to PFI0 - PFI9.

Some of the more esoteric triggering possibilities of these boards
are not supported.

5.6.73 ni_atmio16d -- National Instruments AT-MIO-16D

Author: Chris R. Baugher <baugher@enteract.com>

Status: unknown

Manufacturer Device Name
National Instruments AT-MIO-16 atmio16
National Instruments AT-MIO-16D atmio16d

5.6.74 ni_daq_700 -- National Instruments PCMCIA DAQCard-700 DIO only

Author: Fred Brooks <nsaspook@nsaspook.com>, based on ni_daq_dio24 by Daniel Vecino Castel <dvecino@able.es>

Status: works

Manufacturer Device Name
National Instruments PCMCIA DAQ-Card-700 ni_daq_700

The daqcard-700 appears in Comedi as a single digital I/O subdevice with
16 channels. The channel 0 corresponds to the daqcard-700’s output
port, bit 0; channel 8 corresponds to the input port, bit 0.

Direction configuration: channels 0-7 output, 8-15 input (8225 device
emu as port A output, port B input, port C N/A).

Comedi 130 / 161

IRQ is assigned but not used.

5.6.75 ni_daq_dio24 -- National Instruments PCMCIA DAQ-Card DIO-24

Author: Daniel Vecino Castel <dvecino@able.es>

Status: ?

Manufacturer Device Name
National Instruments PCMCIA DAQ-Card DIO-24 ni_daq_dio24

This is just a wrapper around the 8255.o driver to properly handle
the PCMCIA interface.

5.6.76 ni_labpc -- National Instruments Lab-PC (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
National Instruments Lab-PC-1200 labpc-1200
National Instruments Lab-PC-1200AI labpc-1200ai
National Instruments Lab-PC+ lab-pc+
National Instruments PCI-1200 ni_labpc

Tested with lab-pc-1200. For the older Lab-PC+, not all input ranges
and analog references will work, the available ranges/arefs will
depend on how you have configured the jumpers on your board
(see your owner’s manual).

Kernel-level ISA plug-and-play support for the lab-pc-1200
boards has not
yet been added to the driver, mainly due to the fact that
I don’t know the device id numbers. If you have one
of these boards,
please file a bug report at https://bugs.comedi.org/
so I can get the necessary information from you.

The 1200 series boards have onboard calibration dacs for correcting
analog input/output offsets and gains. The proper settings for these
caldacs are stored on the board’s eeprom. To read the caldac values
from the eeprom and store them into a file that can be then be used by
comedilib, use the comedi_calibrate program.

Configuration options - ISA boards:

Comedi 131 / 161

[0] - I/O port base address
[1] - IRQ (optional, required for timed or externally triggered conversions)
[2] - DMA channel (optional)

Configuration options - PCI boards:
[0] - bus (optional)
[1] - slot (optional)

The Lab-pc+ has quirky chanlist requirements
when scanning multiple channels. Multiple channel scan
sequence must start at highest channel, then decrement down to
channel 0. The rest of the cards can scan down like lab-pc+ or scan
up from channel zero. Chanlists consisting of all one channel
are also legal, and allow you to pace conversions in bursts.

5.6.77 ni_labpc_cs -- National Instruments Lab-PC (& compatibles)

Author: Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

Manufacturer Device Name
National Instruments DAQCard-1200 daqcard-1200

Thanks go to Fredrik Lingvall for much testing and perseverance in
helping to debug daqcard-1200 support.

The 1200 series boards have onboard calibration dacs for correcting
analog input/output offsets and gains. The proper settings for these
caldacs are stored on the board’s eeprom. To read the caldac values
from the eeprom and store them into a file that can be then be used by
comedilib, use the comedi_calibrate program.

Configuration options:
none

The daqcard-1200 has quirky chanlist requirements
when scanning multiple channels. Multiple channel scan
sequence must start at highest channel, then decrement down to
channel 0. Chanlists consisting of all one channel
are also legal, and allow you to pace conversions in bursts.

5.6.78 ni_mio_cs -- National Instruments DAQCard E series

Author: ds

Status: works

Comedi 132 / 161

Manufacturer Device Name
National Instruments DAQCard-AI-16XE-50 ni_mio_cs
National Instruments DAQCard-AI-16E-4 ni_mio_cs
National Instruments DAQCard-6062E ni_mio_cs
National Instruments DAQCard-6024E ni_mio_cs
National Instruments DAQCard-6036E ni_mio_cs

See the notes in the ni_atmio.o driver.

5.6.79 ni_pcidio -- National Instruments PCI-DIO32HS, PCI-DIO96, PCI-6533, PCI-6503

Author: ds

Status: works

Manufacturer Device Name
National Instruments PCI-DIO-32HS ni_pcidio
National Instruments PXI-6533 ni_pcidio
National Instruments PCI-DIO-96 ni_pcidio
National Instruments PCI-DIO-96B ni_pcidio
National Instruments PXI-6508 ni_pcidio
National Instruments PCI-6503 ni_pcidio
National Instruments PCI-6503B ni_pcidio
National Instruments PCI-6503X ni_pcidio
National Instruments PXI-6503 ni_pcidio
National Instruments PCI-6533 ni_pcidio
National Instruments PCI-6534 ni_pcidio

The DIO-96 appears as four 8255 subdevices. See the 8255
driver notes for details.

The DIO32HS board appears as one subdevice, with 32 channels.
Each channel is individually I/O configurable. The channel order
is 0=A0, 1=A1, 2=A2, ... 8=B0, 16=C0, 24=D0. The driver only
supports simple digital I/O; no handshaking is supported.

DMA mostly works for the PCI-DIO32HS, but only in timed input mode.

The PCI-DIO-32HS/PCI-6533 has a configurable external trigger. Setting
scan_begin_arg to 0 or CR_EDGE triggers on the leading edge. Setting
scan_begin_arg to CR_INVERT or (CR_EDGE | CR_INVERT) triggers on the
trailing edge.

This driver could be easily modified to support AT-MIO32HS and
AT-MIO96.

The PCI-6534 requires a firmware upload after power-up to work, the
firmware data and instructions for loading it with comedi_config
it are contained in the
comedi_nonfree_firmware tarball available from http://www.comedi.org

Comedi 133 / 161

5.6.80 ni_pcimio -- National Instruments PCI-MIO-E series and M series (all boards)

Author: ds, John Hallen, Frank Mori Hess, Rolf Mueller, Herbert Peremans, Herman Bruyninckx, Terry Barnaby

Status: works

Manufacturer Device Name
National Instruments PCI-MIO-16XE-50 ni_pcimio
National Instruments PCI-MIO-16XE-10 ni_pcimio
National Instruments PXI-6030E ni_pcimio
National Instruments PCI-MIO-16E-1 ni_pcimio
National Instruments PCI-MIO-16E-4 ni_pcimio
National Instruments PCI-6014 ni_pcimio
National Instruments PCI-6040E ni_pcimio
National Instruments PXI-6040E ni_pcimio
National Instruments PCI-6030E ni_pcimio
National Instruments PCI-6031E ni_pcimio
National Instruments PCI-6032E ni_pcimio
National Instruments PCI-6033E ni_pcimio
National Instruments PCI-6071E ni_pcimio
National Instruments PCI-6023E ni_pcimio
National Instruments PCI-6024E ni_pcimio
National Instruments PCI-6025E ni_pcimio
National Instruments PXI-6025E ni_pcimio
National Instruments PCI-6034E ni_pcimio
National Instruments PCI-6035E ni_pcimio
National Instruments PCI-6052E ni_pcimio
National Instruments PCI-6110 ni_pcimio
National Instruments PCI-6111 ni_pcimio
National Instruments PCI-6220 ni_pcimio
National Instruments PXI-6220 ni_pcimio
National Instruments PCI-6221 ni_pcimio
National Instruments PXI-6221 ni_pcimio
National Instruments PCI-6224 ni_pcimio
National Instruments PXI-6224 ni_pcimio
National Instruments PCI-6225 ni_pcimio
National Instruments PXI-6225 ni_pcimio
National Instruments PCI-6229 ni_pcimio
National Instruments PCI-6250 ni_pcimio
National Instruments PXI-6250 ni_pcimio
National Instruments PCI-6251 ni_pcimio
National Instruments PXI-6251 ni_pcimio
National Instruments PCIe-6251 ni_pcimio
National Instruments PXIe-6251 ni_pcimio
National Instruments PCI-6254 ni_pcimio
National Instruments PXI-6254 ni_pcimio
National Instruments PCI-6259 ni_pcimio
National Instruments PXI-6259 ni_pcimio
National Instruments PCIe-6259 ni_pcimio
National Instruments PXIe-6259 ni_pcimio
National Instruments PCI-6280 ni_pcimio

Comedi 134 / 161

Manufacturer Device Name
National Instruments PXI-6280 ni_pcimio
National Instruments PCI-6281 ni_pcimio
National Instruments PXI-6281 ni_pcimio
National Instruments PCI-6284 ni_pcimio
National Instruments PXI-6284 ni_pcimio
National Instruments PCI-6289 ni_pcimio
National Instruments PXI-6289 ni_pcimio
National Instruments PCI-6711 ni_pcimio
National Instruments PXI-6711 ni_pcimio
National Instruments PCI-6713 ni_pcimio
National Instruments PXI-6713 ni_pcimio
National Instruments PXI-6071E ni_pcimio
National Instruments PCI-6070E ni_pcimio
National Instruments PXI-6070E ni_pcimio
National Instruments PXI-6052E ni_pcimio
National Instruments PCI-6036E ni_pcimio
National Instruments PCI-6731 ni_pcimio
National Instruments PCI-6733 ni_pcimio
National Instruments PXI-6733 ni_pcimio
National Instruments PCI-6143 ni_pcimio
National Instruments PXI-6143 ni_pcimio

These boards are almost identical to the AT-MIO E series, except that
they use the PCI bus instead of ISA (i.e., AT). See the notes for
the ni_atmio.o driver for additional information about these boards.

Autocalibration is supported on many of the devices, using the
comedi_calibrate (or comedi_soft_calibrate for m-series) utility.
M-Series boards do analog input and analog output calibration entirely
in software. The software calibration corrects
the analog input for offset, gain and
nonlinearity. The analog outputs are corrected for offset and gain.
See the comedilib documentation on comedi_get_softcal_converter() for
more information.

By default, the driver uses DMA to transfer analog input data to
memory. When DMA is enabled, not all triggering features are
supported.

Digital I/O may not work on 673x.

Note that the PCI-6143 is a simultaineous sampling device with 8 convertors.
With this board all of the convertors perform one simultaineous sample during
a scan interval. The period for a scan is used for the convert time in a
Comedi cmd. The convert trigger source is normally set to TRIG_NOW by default.

The RTSI trigger bus is supported on these cards on
subdevice 10. See the comedilib documentation for details.

Information (number of channels, bits, etc.) for some devices may be
incorrect. Please check this and submit a bug if there are problems
for your device.

SCXI is probably broken for m-series boards.

Comedi 135 / 161

5.6.81 ni_tio -- National Instruments general purpose counters

Author: J.P. Mellor <jpmellor@rose-hulman.edu>, Herman.Bruyninckx@mech.kuleuven.ac.be, Wim.Meeussen@mech.kuleuven.ac.be,
Klaas.Gadeyne@mech.kuleuven.ac.be, Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

This module is not used directly by end-users. Rather, it
is used by other drivers (for example ni_660x and ni_pcimio)
to provide support for NI’s general purpose counters. It was
originally based on the counter code from ni_660x.c and
ni_mio_common.c.

5.6.82 ni_tiocmd -- National Instruments general purpose counters command support

Author: J.P. Mellor <jpmellor@rose-hulman.edu>, Herman.Bruyninckx@mech.kuleuven.ac.be, Wim.Meeussen@mech.kuleuven.ac.be,
Klaas.Gadeyne@mech.kuleuven.ac.be, Frank Mori Hess <fmhess@users.sourceforge.net>

Status: works

This module is not used directly by end-users. Rather, it
is used by other drivers (for example ni_660x and ni_pcimio)
to provide command support for NI’s general purpose counters.
It was originally split out of ni_tio.c to stop the ’ni_tio’
module depending on the ’mite’ module.

5.6.83 pcl711 -- Advantech PCL-711 and 711b, ADLINK ACL-8112

Author: ds, Janne Jalkanen <jalkanen@cs.hut.fi>, Eric Bunn <ebu@cs.hut.fi>

Status: mostly complete

Manufacturer Device Name
Advantech PCL-711 pcl711
Advantech PCL-711B pcl711b
ADLINK ACL-8112HG acl8112hg
ADLINK ACL-8112DG acl8112dg

Comedi 136 / 161

Since these boards do not have DMA or FIFOs, only immediate mode is
supported.

5.6.84 pcl724 -- Advantech PCL-724, PCL-722, PCL-731 ADLINK ACL-7122, ACL-7124, PET-48DIO

Author: Michal Dobes <dobes@tesnet.cz>

Status: untested

Manufacturer Device Name
Advantech PCL-724 pcl724
Advantech PCL-722 pcl722
Advantech PCL-731 pcl731
ADLINK ACL-7122 acl7122
ADLINK ACL-7124 acl7124
ADLINK PET-48DIO pet48dio

This is driver for digital I/O boards PCL-722/724/731 with 144/24/48 DIO
and for digital I/O boards ACL-7122/7124/PET-48DIO with 144/24/48 DIO.
It need 8255.o for operations and only immediate mode is supported.
See the source for configuration details.

5.6.85 pcl725 -- Advantech PCL-725 (& compatibles)

Author: ds

Status: unknown

Manufacturer Device Name
Advantech PCL-725 pcl725

5.6.86 pcl726 -- Advantech PCL-726 & compatibles

Author: ds

Status: untested

Manufacturer Device Name
Advantech PCL-726 pcl726

Comedi 137 / 161

Manufacturer Device Name
Advantech PCL-727 pcl727
Advantech PCL-728 pcl728
ADLINK ACL-6126 acl6126
ADLINK ACL-6128 acl6128

Interrupts are not supported.

Options for PCL-726:
[0] - IO Base
[2]...[7] - D/A output range for channel 1-6:

0: 0-5V, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA, 5: unknown (external reference)

Options for PCL-727:
[0] - IO Base
[2]...[13] - D/A output range for channel 1-12:

0: 0-5V, 1: 0-10V, 2: +/-5V,
3: 4-20mA

Options for PCL-728 and ACL-6128:
[0] - IO Base
[2], [3] - D/A output range for channel 1 and 2:

0: 0-5V, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA, 5: 0-20mA

Options for ACL-6126:
[0] - IO Base
[1] - IRQ (0=disable, 3, 5, 6, 7, 9, 10, 11, 12, 15) (currently ignored)
[2]...[7] - D/A output range for channel 1-6:

0: 0-5V, 1: 0-10V, 2: +/-5V, 3: +/-10V,
4: 4-20mA

5.6.87 pcl730 -- Advantech PCL-730 (& compatibles)

Author: José Luis Sánchez (jsanchezv@teleline.es)

Status: untested

Manufacturer Device Name
Advantech PCL-730 pcl730
ICP ISO-730 iso730
ICP [ADLINK] ACL-7130 acl7130

Interrupts are not supported.
The ACL-7130 card have an 8254 timer/counter not supported by this driver.

Comedi 138 / 161

5.6.88 pcl812 -- Advantech PCL-812/PG, PCL-813/B, ADLINK ACL-8112DG/HG/PG, ACL-8113, ACL-8216, ICP DAS A-
821PGH/PGL/PGL-NDA, A-822PGH/PGL, A-823PGH/PGL, A-826PG, ICP DAS ISO-813

Author: Michal Dobes <dobes@tesnet.cz>

Status: works (I hope. My board fire up under my hands and I cann’t test all features.)

Manufacturer Device Name
Advantech PCL-812 pcl812
Advantech PCL-812PG pcl812pg
Advantech PCL-813 pcl813
Advantech PCL-813B pcl813b
ADLINK ACL-8112DG acl8112dg
ADLINK ACL-8112HG acl8112hg
ADLINK ACL-8113 acl-8113
ADLINK ACL-8216 acl8216
ICP ISO-813 iso813
ICP A-821PGH a821pgh
ICP A-821PGL a821pgl
ICP A-821PGL-NDA a821pclnda
ICP A-822PGH a822pgh
ICP A-822PGL a822pgl
ICP A-823PGH a823pgh
ICP A-823PGL a823pgl
ICP A-826PG a826pg

This driver supports insn and cmd interfaces. Some boards support only insn
becouse their hardware don’t allow more (PCL-813/B, ACL-8113, ISO-813).
Data transfer over DMA is supported only when you measure only one
channel, this is too hardware limitation of these boards.

Options for PCL-812:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7; 10, 11, 12, 14, 15)
[2] - DMA (0=disable, 1, 3)
[3] - 0=trigger source is internal 8253 with 2MHz clock

1=trigger source is external
[4] - 0=A/D input range is +/-10V

1=A/D input range is +/-5V
2=A/D input range is +/-2.5V
3=A/D input range is +/-1.25V
4=A/D input range is +/-0.625V
5=A/D input range is +/-0.3125V

[5] - 0=D/A outputs 0-5V (internal reference -5V)
1=D/A outputs 0-10V (internal reference -10V)
2=D/A outputs unknow (external reference)

Options for PCL-812PG, ACL-8112PG:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7; 10, 11, 12, 14, 15)
[2] - DMA (0=disable, 1, 3)
[3] - 0=trigger source is internal 8253 with 2MHz clock

1=trigger source is external
[4] - 0=A/D have max +/-5V input

1=A/D have max +/-10V input
[5] - 0=D/A outputs 0-5V (internal reference -5V)

1=D/A outputs 0-10V (internal reference -10V)
2=D/A outputs unknow (external reference)

Comedi 139 / 161

Options for ACL-8112DG/HG, A-822PGL/PGH, A-823PGL/PGH, ACL-8216, A-826PG:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7; 10, 11, 12, 14, 15)
[2] - DMA (0=disable, 1, 3)
[3] - 0=trigger source is internal 8253 with 2MHz clock

1=trigger source is external
[4] - 0=A/D channels are S.E.

1=A/D channels are DIFF
[5] - 0=D/A outputs 0-5V (internal reference -5V)

1=D/A outputs 0-10V (internal reference -10V)
2=D/A outputs unknow (external reference)

Options for A-821PGL/PGH:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - 0=A/D channels are S.E.

1=A/D channels are DIFF
[3] - 0=D/A output 0-5V (internal reference -5V)

1=D/A output 0-10V (internal reference -10V)

Options for A-821PGL-NDA:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - 0=A/D channels are S.E.

1=A/D channels are DIFF

Options for PCL-813:
[0] - IO Base

Options for PCL-813B:
[0] - IO Base
[1] - 0= bipolar inputs

1= unipolar inputs

Options for ACL-8113, ISO-813:
[0] - IO Base
[1] - 0= 10V bipolar inputs

1= 10V unipolar inputs
2= 20V bipolar inputs
3= 20V unipolar inputs

5.6.89 pcl816 -- Advantech PCL-816 cards, PCL-814

Author: Juan Grigera <juan@grigera.com.ar>

Status: works

Manufacturer Device Name
Advantech PCL-816 pcl816
Advantech PCL-814B pcl814b

PCL 816 and 814B have 16 SE/DIFF ADCs, 16 DACs, 16 DI and 16 DO.
Differences are at resolution (16 vs 12 bits).

Comedi 140 / 161

The driver support AI command mode, other subdevices not written.

Analog output and digital input and output are not supported.

Configuration Options:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254

5.6.90 pcl818 -- Advantech PCL-818 cards, PCL-718

Author: Michal Dobes <dobes@tesnet.cz>

Status: works

Manufacturer Device Name
Advantech PCL-818L pcl818l
Advantech PCL-818H pcl818h
Advantech PCL-818HD pcl818hd
Advantech PCL-818HG pcl818hg
Advantech PCL-818 pcl818
Advantech PCL-718 pcl718

All cards have 16 SE/8 DIFF ADCs, one or two DACs, 16 DI and 16 DO.
Differences are only at maximal sample speed, range list and FIFO
support.
The driver support AI mode 0, 1, 3 other subdevices (AO, DI, DO) support
only mode 0. If DMA/FIFO/INT are disabled then AI support only mode 0.
PCL-818HD and PCL-818HG support 1kword FIFO. Driver support this FIFO
but this code is untested.
A word or two about DMA. Driver support DMA operations at two ways:
1) DMA uses two buffers and after one is filled then is generated

INT and DMA restart with second buffer. With this mode I’m unable run
more that 80Ksamples/secs without data dropouts on K6/233.

2) DMA uses one buffer and run in autoinit mode and the data are
from DMA buffer moved on the fly with 2kHz interrupts from RTC.
This mode is used if the interrupt 8 is available for allocation.
If not, then first DMA mode is used. With this I can run at
full speed one card (100ksamples/secs) or two cards with
60ksamples/secs each (more is problem on account of ISA limitations).
To use this mode you must have compiled kernel with disabled
"Enhanced Real Time Clock Support".
Maybe you can have problems if you use xntpd or similar.
If you’ve data dropouts with DMA mode 2 then:
a) disable IDE DMA
b) switch text mode console to fb.

Options for PCL-818L:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)

Comedi 141 / 161

[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0, 5=A/D input -5V.. +5V

1, 10=A/D input -10V..+10V
[5] - 0, 5=D/A output 0-5V (internal reference -5V)

1, 10=D/A output 0-10V (internal reference -10V)
2 =D/A output unknow (external reference)

Options for PCL-818, PCL-818H:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0, 5=D/A output 0-5V (internal reference -5V)

1, 10=D/A output 0-10V (internal reference -10V)
2 =D/A output unknow (external reference)

Options for PCL-818HD, PCL-818HG:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA/FIFO (-1=use FIFO, 0=disable both FIFO and DMA,

1=use DMA ch 1, 3=use DMA ch 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0, 5=D/A output 0-5V (internal reference -5V)

1, 10=D/A output 0-10V (internal reference -10V)
2 =D/A output unknow (external reference)

Options for PCL-718:
[0] - IO Base
[1] - IRQ (0=disable, 2, 3, 4, 5, 6, 7)
[2] - DMA (0=disable, 1, 3)
[3] - 0, 10=10MHz clock for 8254

1= 1MHz clock for 8254
[4] - 0=A/D Range is +/-10V

1= +/-5V
2= +/-2.5V
3= +/-1V
4= +/-0.5V
5= user defined bipolar
6= 0-10V
7= 0-5V
8= 0-2V
9= 0-1V

10= user defined unipolar
[5] - 0, 5=D/A outputs 0-5V (internal reference -5V)

1, 10=D/A outputs 0-10V (internal reference -10V)
2=D/A outputs unknow (external reference)

[6] - 0, 60=max 60kHz A/D sampling
1,100=max 100kHz A/D sampling (PCL-718 with Option 001 installed)

5.6.91 pcm3724 -- Advantech PCM-3724

Author: Drew Csillag <drew_csillag@yahoo.com>

Comedi 142 / 161

Status: tested

Manufacturer Device Name
Advantech PCM-3724 pcm724

This is driver for digital I/O boards PCM-3724 with 48 DIO.
It needs 8255.o for operations and only immediate mode is supported.
See the source for configuration details.

Copy/pasted/hacked from pcm724.c

5.6.92 pcm3730 -- PCM3730

Author: Blaine Lee

Status: unknown

Manufacturer Device Name
Advantech PCM-3730 pcm3730

Configuration options:
[0] - I/O port base

5.6.93 pcmad -- Winsystems PCM-A/D12, PCM-A/D16

Author: ds

Status: untested

Manufacturer Device Name
Winsystems PCM-A/D12 pcmad12
Winsystems PCM-A/D16 pcmad16

This driver was written on a bet that I couldn’t write a driver
in less than 2 hours. I won the bet, but never got paid. =(

Configuration options:
[0] - I/O port base
[1] - unused
[2] - Analog input reference

0 = single ended
1 = differential

[3] - Analog input encoding (must match jumpers)
0 = straight binary

Comedi 143 / 161

1 = two’s complement

5.6.94 pcmda12 -- A driver for the Winsystems PCM-D/A-12

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Winsystems PCM-D/A-12 pcmda12

A driver for the relatively straightforward-to-program PCM-D/A-12.
This board doesn’t support commands, and the only way to set its
analog output range is to jumper the board. As such,
comedi_data_write() ignores the range value specified.

The board uses 16 consecutive I/O addresses starting at the I/O port
base address. Each address corresponds to the LSB then MSB of a
particular channel from 0-7.

Note that the board is not ISA-PNP capable and thus
needs the I/O port comedi_config parameter.

Note that passing a nonzero value as the second config option will
enable "simultaneous xfer" mode for this board, in which AO writes
will not take effect until a subsequent read of any AO channel. This
is so that one can speed up programming by preloading all AO registers
with values before simultaneously setting them to take effect with one
read command.

Configuration Options:
[0] - I/O port base address
[1] - Do Simultaneous Xfer (see description)

5.6.95 pcmmio -- A driver for the PCM-MIO multifunction board

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Winsystems PCM-MIO pcmmio

A driver for the relatively new PCM-MIO multifunction board from
Winsystems. This board is a PC-104 based I/O board. It contains
four subdevices:

subdevice 0 - 16 channels of 16-bit AI

Comedi 144 / 161

subdevice 1 - 8 channels of 16-bit AO
subdevice 2 - first 24 channels of the 48 channel of DIO (with edge-triggered interrupt ←↩

support)
subdevice 3 - last 24 channels of the 48 channel DIO (no interrupt support for this bank ←↩

of channels)

Some notes:

Synchronous reads and writes are the only things implemented for AI and AO,
even though the hardware itself can do streaming acquisition, etc. Anyone
want to add asynchronous I/O for AI/AO as a feature? Be my guest...

Asynchronous I/O for the DIO subdevices *is* implemented, however! They are
basically edge-triggered interrupts for any configuration of the first
24 DIO-lines.

Also note that this interrupt support is untested.

A few words about edge-detection IRQ support (commands on DIO):

* To use edge-detection IRQ support for the DIO subdevice, pass the IRQ
of the board to the comedi_config command. The board IRQ is not jumpered
but rather configured through software, so any IRQ from 1-15 is OK.

* Due to the genericity of the comedi API, you need to create a special
comedi_command in order to use edge-triggered interrupts for DIO.

* Use comedi_commands with TRIG_NOW. Your callback will be called each
time an edge is detected on the specified DIO line(s), and the data
values will be two sample_t’s, which should be concatenated to form
one 32-bit unsigned int. This value is the mask of channels that had
edges detected from your channel list. Note that the bits positions
in the mask correspond to positions in your chanlist when you
specified the command and *not* channel id’s!

* To set the polarity of the edge-detection interrupts pass a nonzero value
for either CR_RANGE or CR_AREF for edge-up polarity, or a zero
value for both CR_RANGE and CR_AREF if you want edge-down polarity.

Configuration Options:
[0] - I/O port base address
[1] - IRQ (optional -- for edge-detect interrupt support only, leave out if you don’t ←↩

need this feature)

5.6.96 pcmuio -- A driver for the PCM-UIO48A and PCM-UIO96A boards from Winsystems.

Author: Calin Culianu <calin@ajvar.org>

Status: works

Manufacturer Device Name
Winsystems PCM-UIO48A pcmuio48
Winsystems PCM-UIO96A pcmuio96

Comedi 145 / 161

A driver for the relatively straightforward-to-program PCM-UIO48A and
PCM-UIO96A boards from Winsystems. These boards use either one or two
(in the 96-DIO version) WS16C48 ASIC HighDensity I/O Chips (HDIO).
This chip is interesting in that each I/O line is individually
programmable for INPUT or OUTPUT (thus comedi_dio_config can be done
on a per-channel basis). Also, each chip supports edge-triggered
interrupts for the first 24 I/O lines. Of course, since the
96-channel version of the board has two ASICs, it can detect polarity
changes on up to 48 I/O lines. Since this is essentially an (non-PnP)
ISA board, I/O Address and IRQ selection are done through jumpers on
the board. You need to pass that information to this driver as the
first and second comedi_config option, respectively. Note that the
48-channel version uses 16 bytes of IO memory and the 96-channel
version uses 32-bytes (in case you are worried about conflicts). The
48-channel board is split into two 24-channel comedi subdevices.
The 96-channel board is split into 4 24-channel DIO subdevices.

Note that IRQ support has been added, but it is untested.

To use edge-detection IRQ support, pass the IRQs of both ASICS
(for the 96 channel version) or just 1 ASIC (for 48-channel version).
Then, use use comedi_commands with TRIG_NOW.
Your callback will be called each time an edge is triggered, and the data
values will be two sample_t’s, which should be concatenated to form one
32-bit unsigned int. This value is the mask of channels that had
edges detected from your channel list. Note that the bits positions
in the mask correspond to positions in your chanlist when you specified
the command and *not* channel id’s!

To set the polarity of the edge-detection interrupts pass a nonzero value for
either CR_RANGE or CR_AREF for edge-up polarity, or a zero value for both
CR_RANGE and CR_AREF if you want edge-down polarity.

In the 48-channel version:

On subdev 0, the first 24 channels channels are edge-detect channels.

In the 96-channel board you have the collowing channels that can do edge detection:

subdev 0, channels 0-24 (first 24 channels of 1st ASIC)
subdev 2, channels 0-24 (first 24 channels of 2nd ASIC)

Configuration Options:
[0] - I/O port base address
[1] - IRQ (for first ASIC, or first 24 channels)
[2] - IRQ for second ASIC (pcmuio96 only - IRQ for chans 48-72 .. can be the same as ←↩

first irq!)

5.6.97 poc -- Generic driver for very simple devices

Author: ds

Status: unknown

Manufacturer Device Name
Keithley Metrabyte DAC-02 dac02

Comedi 146 / 161

Manufacturer Device Name
Advantech PCL-733 pcl733
Advantech PCL-734 pcl734

This driver is indended to support very simple ISA-based devices,

Configuration options:
[0] - I/O port base

5.6.98 quatech_daqp_cs -- Quatech DAQP PCMCIA data capture cards

Author: Brent Baccala <baccala@freesoft.org>

Status: works

Manufacturer Device Name
Quatech DAQP-208 daqp
Quatech DAQP-308 daqp

5.6.99 rtd520 -- Real Time Devices PCI4520/DM7520

Author: Dan Christian

Status: Works. Only tested on DM7520-8. Not SMP safe.

Manufacturer Device Name
Real Time Devices DM7520HR-1 rtd520
Real Time Devices DM7520HR-8 rtd520
Real Time Devices PCI4520 rtd520
Real Time Devices PCI4520-8 rtd520

Configuration options:
[0] - PCI bus of device (optional)

If bus/slot is not specified, the first available PCI
device will be used.

[1] - PCI slot of device (optional)

Comedi 147 / 161

5.6.100 rti800 -- Analog Devices RTI-800/815

Author: ds

Status: unknown

Manufacturer Device Name
Analog Devices RTI-800 rti800
Analog Devices RTI-815 rti815

Configuration options:
[0] - I/O port base address
[1] - IRQ
[2] - A/D reference

0 = differential
1 = pseudodifferential (common)
2 = single-ended

[3] - A/D range
0 = [-10,10]
1 = [-5,5]
2 = [0,10]

[4] - A/D encoding
0 = two’s complement
1 = straight binary

[5] - DAC 0 range
0 = [-10,10]
1 = [0,10]

[6] - DAC 0 encoding
0 = two’s complement
1 = straight binary

[7] - DAC 1 range (same as DAC 0)
[8] - DAC 1 encoding (same as DAC 0)

5.6.101 rti802 -- Analog Devices RTI-802

Author: Anders Blomdell <anders.blomdell@control.lth.se>

Status: works

Manufacturer Device Name
Analog Devices RTI-802 rti802

Configuration Options:
[0] - i/o base
[1] - unused
[2] - dac#0 0=two’s comp, 1=straight
[3] - dac#0 0=bipolar, 1=unipolar
[4] - dac#1 ...
...
[17] - dac#7 ...

Comedi 148 / 161

5.6.102 s526 -- Sensoray 526 driver

Author: Richie Everett Wang <everett.wang@everteq.com>

Status: experimental

Manufacturer Device Name
Sensoray 526 s526

Encoder works
Analog input works
Analog output works
PWM output works
Commands are not supported yet.

Configuration Options:

comedi_config /dev/comedi0 s526 0x2C0,0x3

5.6.103 s626 -- Sensoray 626 driver

Author: Richie Everett Wang <everett.wang@everteq.com>

Status: experimental

Manufacturer Device Name
Sensoray 626 s626

Configuration options:
[0] - PCI bus of device (optional)
[1] - PCI slot of device (optional)
If bus/slot is not specified, the first supported
PCI device found will be used.

INSN_CONFIG instructions:
analog input:
none

analog output:
none

digital channel:
s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
supported configuration options:
INSN_CONFIG_DIO_QUERY
COMEDI_INPUT

Comedi 149 / 161

COMEDI_OUTPUT

encoder:
Every channel must be configured before reading.

Example code

insn.insn=INSN_CONFIG; //configuration instruction
insn.n=1; //number of operation (must be 1)
insn.data=&initialvalue; //initial value loaded into encoder

//during configuration
insn.subdev=5; //encoder subdevice
insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel

//to configure

comedi_do_insn(cf,&insn); //executing configuration

5.6.104 serial2002 -- Driver for serial connected hardware

Author: Anders Blomdell

Status: in development

5.6.105 skel -- Skeleton driver, an example for driver writers

Author: ds

Status: works

This driver is a documented example on how Comedi drivers are
written.

Configuration Options:
none

5.6.106 ssv_dnp -- SSV Embedded Systems DIL/Net-PC

Author: Robert Schwebel <robert@schwebel.de>

Status: unknown

Manufacturer Device Name
SSV Embedded Systems DIL/Net-PC 1486 dnp-1486

Comedi 150 / 161

5.6.107 unioxx5 -- Driver for Fastwel UNIOxx-5 (analog and digital i/o) boards.

Author: Kruchinin Daniil (asgard) <asgard@etersoft.ru>

Status: unknown

Manufacturer Device Name
Fastwel UNIOxx-5 unioxx5
Fastwel UNIOxx-5 unioxx5

This card supports digital and analog I/O. It written for g01
subdevices only.
channels range: 0 .. 23 dio channels
and 0 .. 11 analog modules range
During attaching unioxx5 module displays modules identifiers
(see dmesg after comedi_config) in format:
| [module_number] module_id |

5.6.108 usbdux -- Driver for USB-DUX-D of INCITE Technology Limited

Author: Bernd Porr <tech@linux-usb-daq.co.uk>

Status: Stable

Manufacturer Device Name
ITL USB-DUX-D usbdux

The following subdevices are available
- Analog input
subdevice: 0
number of channels: 8
max data value: 4095
ranges:

all channels:
range = 0 : [-4.096 V,4.096 V]
range = 1 : [-2.048 V,2.048 V]
range = 2 : [0 V,4.096 V]
range = 3 : [0 V,2.048 V]

command:
start: now|int
scan_begin: timer (contains the sampling interval. min is 125us / chan)
convert: now
scan_end: count
stop: none|count

Comedi 151 / 161

- Analogue output:
subdevice: 1
number of channels: 4
max data value: 4095
ranges:

all channels:
range = 0 : [-4.096 V,4.096 V]
range = 1 : [0 V,4.096 V]

command:
start: now|int
scan_begin: timer (contains the sampling interval. min is 1ms.)
convert: now
scan_end: count
stop: none|count

- Digital I/O
subdevice: 2
number of channels: 8

- Counter
subdevice: 3
number of channels: 4
max data value: 65535
Pin assignments on the D-connector:

0=/CLK0, 1=UP/DOWN0, 2=RESET0, 4=/CLK1, 5=UP/DOWN1, 6=RESET1
- PWM
subdevice: 4
number of channels: 8 or 4 + polarity output for H-bridge

(see INSN_CONFIG_PWM_SET_H_BRIDGE where
the first byte is the value and the
second the polarity)

max data value: 512

Configuration options
The device requires firmware which is usually
uploaded automatically by udev/hotplug at the moment
the driver module is loaded.
In case udev/hotplug is not enabled you need to upload
the firmware with comedi_config -i usbdux_firmware.bin.
The firmware is usually installed under /lib/firmware
or can be downloaded form http://www.linux-usb-daq.co.uk.

5.6.109 usbduxfast -- Driver for USB-DUX-FAST of INCITE Technology Limited

Author: Bernd Porr <tech@linux-usb-daq.co.uk>

Status: stable

Manufacturer Device Name
ITL USB-DUX-FAST usbduxfast

The device has one subdevice for analogue input.
- subdevice: 0
number of channels: 16
max data value: 4096
ranges:

Comedi 152 / 161

all channelss:
range = 0 : [-0.75 V,0.75 V]
range = 1 : [-0.5 V,0.5 V]

command:
The channel-list allows 1,2,3 and 16 channels.
start: now|ext|int (external trigger via pin at HD-D connector)
scan_begin: follow|timer|ext
convert: timer|ext (contains the sampling interval. Min interval

for single channel acquisition is 33us
and for multiplexed acquisition 300us)

scan_end: count
stop: none|count

Configuration options:
The device requires firmware which is usually
uploaded automatically by udev/hotplug at the moment
the driver module is being loaded.
In case udev/hotplug is not enabled you need to upload
the firmware with comedi_config -i usbduxfast_firmware.bin
The firmware is usually installed under /lib/firmware
or can be downloaded form http://www.linux-usb-daq.co.uk.

5.6.110 usbduxsigma -- Driver for USB-DUX-SIGMA of INCITE Technology Limited

Author: Bernd Porr <tech@linux-usb-daq.co.uk>

Status: Stable

Manufacturer Device Name
ITL USB-DUX-SIGMA usbduxsigma

The following subdevices are available
- Analog input
subdevice: 0
number of channels: 16
max data value: 16777215 (0xfffff, 24bits)
ranges:

all channels: [-1.325 V,1.325 V]
command:

start: now|int
scan_begin: timer (contains the sampling interval. min 250us)
convert: now
scan_end: count
stop: none|count

- Analog output
subdevice: 1
number of channels: 4
max data value: 255
ranges:

all channels: [0 V,2.5 V]
command:

start: now|int
scan_begin: timer (contains the sampling interval. min 1ms)
convert: now

Comedi 153 / 161

scan_end: count
stop: none|count

- Digital I/O
subdevice: 2
number of channels: 24 (first 8 bits on the D connector, 16 bits int.)

- PWM
subdevice: 3
number of channels: 8 or 4 + polarity output for H-bridge

(see INSN_CONFIG_PWM_SET_H_BRIDGE where
the first byte is the value and the
second the polarity)

max data value: 512

Configuration options:
The device requires firmware which is usually
uploaded automatically by udev/hotplug at the moment
the driver module is loaded.
In case udev/hotplug is not enabled you need to upload
the firmware with comedi_config -i usbdux_firmware.bin.
The firmware is usually installed under /lib/firmware
or can be downloaded form http://www.linux-usb-daq.co.uk.

6 Writing a Comedi driver

This section explains the most important implementations aspects of the Comedi device drivers. It tries to give the interested
device driver writer an overview of the different steps required to write a new device driver.

This section does not explain all implementation details of the Comedi software itself: Comedi has once and for all solved lots of
boring but indispensable infrastructural things, such as: timers, management of which drivers are active, memory management
for drivers and buffers, wrapping of RTOS-specific interfaces, interrupt handler management, general error handling, the /proc
interface, etc. So, the device driver writers can concentrate on the interesting stuff: implementing their specific interface card’s
DAQ functionalities.

In order to make a decent Comedi device driver, you must know the answers to the following questions:

• How does the communication between user-space and kernel-space work?

• What functionality is provided by the generic kernel-space Comedi functions, and what must be provided for each specific new
driver?

• How to use DMA and interrupts?

• What are the addresses and meanings of all the card’s registers?

This information is to be found in the so-called “register level manual” of the card. Without it, coding a device driver is close
to hopeless. It is also something that Comedi (and hence also this handbook) cannot give any support or information for: board
manufacturers all use their own design and nomenclature.

6.1 Communication user-space — kernel-space

In user-space, you interact with the functions implemented in the Comedilib library. Most of the device driver core of the
Comedilib library is found in lib subdirectory.

All user-space Comedi instructions and commands are transmitted to kernel space through a traditional ioctl() system call. (See
lib/ioctl.c in Comedilib.) The user-space information command is encoded as a number in the ioctl() call, and decoded

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 154 / 161

in the kernel-space library. There, they are executed by their kernel-space counterparts. This is done in the comedi_fops.c
file in the Comedi sources: the comedi_unlocked_ioctl() function processes the results of the ioctl() system call,
interprets its contents, and then calls the corresponding kernel-space do_..._ioctl() function(s). For example, a Comedi
instruction is further processed by the do_insn_ioctl() function. (Which, in turn, uses parse_insn() for further detailed
processing.)

The data corresponding to instructions and commands is transmitted with the copy_from_user() function; acquisition data
captured by the interface card passes the kernel/user-space boundary with the help of a copy_to_user() function.

6.2 Generic functionality

The major include files of the kernel-space part of Comedi are:

• include/linux/comedidev.h: the header file for kernel-only structures (device, subdevice, async (i.e., buffer/event/in-
terrupt/callback functionality for asynchronous DAQ in a Comedi command), driver, lrange), variables, inline functions and
constants.

• include/linux/comedi_rt.h: all the real-time stuff, such as management of ISR in RTAI and RTLinux/Free, and
spinlocks for atomic sections.

• include/linux/comedilib.h: the header file for the kernel library of Comedi (kcomedilib module).

From all the relevant Comedi device driver code that is found in the comedi kernel module source directory, the generic
functionality is contained in two parts:

• A couple of C files contain the infrastructural support. From these C files, it’s especially the comedi_fops.c file that
implements what makes Comedi into what people want to use it for: a library that has solved 90% of the DAQ device driver
efforts, once and for all.

• For real-time applications, the subdirectory kcomedilib implements an interface in the kernel that is similar to the Comedi
interface accessible through the user-space Comedi library.

There are some differences in what is possible and/or needed in kernel-space and in user-space, so the functionalities offered in
kcomedilib are not an exact copy of the user-space library. For example, locking, interrupt handling, real-time execution,
callback handling, etc., are only available in kernel-space.

Most drivers don’t make use (yet) of these real-time functionalities.

6.2.1 Data structures

This Section explains the generic data structures that a device driver interacts with:

typedef struct comedi_lrange_struct comedi_lrange;
typedef struct comedi_subdevice_struct comedi_subdevice;
typedef struct comedi_device_struct comedi_device:
typedef struct comedi_async_struct comedi_async
typedef struct comedi_driver_struct comedi_driver;

They can be found in include/linux/comedidev.h. Most of the fields are filled in by the Comedi infrastructure, but
there are still quite a handful that your driver must provide or use. As for the user-level Comedi, each of the hierarchical layers
has its own data structures: range (comedi_lrange), subdevice, and device.

Note that these kernel-space data structures have similar names as their user-space equivalents, but they have a different (kernel-
side) view on the DAQ problem and a different meaning: they encode the interaction with the hardware, not with the user.

However, the comedi_insn and comedi_cmd data structures are shared between user-space and kernel-space: this should come
as no surprise, since these data structures contain all information that the user-space program must transfer to the kernel-space
driver for each acquisition.

In addition to these data entities that are also known at the user level (device, sub-device, channel), the device driver level provides
two more data structures which the application programmer doesn’t get in touch with: the data structure comedi_driver that stores
the device driver information that is relevant at the operating system level, and the data structure comedi_async that stores the
information about all asynchronous activities (interrupts, callbacks and events).

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 155 / 161

6.2.1.1 comedi_lrange

The channel information is simple, since it contains only the signal range information:

struct comedi_lrange_struct{
int length;
comedi_krange range[GCC_ZERO_LENGTH_ARRAY];

};

6.2.1.2 comedi_subdevice

The subdevice is the smallest Comedi entity that can be used for “stand-alone” DAQ, so it is no surprise that it is quite big:

struct comedi_subdevice_struct{
int type;
int n_chan;
int subdev_flags;
int len_chanlist; /* maximum length of channel/gain list */

void *private;

comedi_async *async;

void *lock;
void *busy;
unsigned int runflags;

int io_bits;

lsampl_t maxdata; /* if maxdata==0, use list */
lsampl_t *maxdata_list; /* list is channel specific */

unsigned int flags;
unsigned int *flaglist;

comedi_lrange *range_table;
comedi_lrange **range_table_list;

unsigned int *chanlist; /* driver-owned chanlist (not used) */

int (*insn_read)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);
int (*insn_write)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);
int (*insn_bits)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);
int (*insn_config)(comedi_device *,comedi_subdevice *,comedi_insn *,lsampl_t *);

int (*do_cmd)(comedi_device *,comedi_subdevice *);
int (*do_cmdtest)(comedi_device *,comedi_subdevice *,comedi_cmd *);
int (*poll)(comedi_device *,comedi_subdevice *);
int (*cancel)(comedi_device *,comedi_subdevice *);

int (*buf_change)(comedi_device *,comedi_subdevice *s,unsigned long new_size);
void (*munge)(comedi_device *, comedi_subdevice *s, void *data, unsigned int num_bytes, ←↩

unsigned int start_chan_index);

unsigned int state;
};

The function pointers insn_read . . . cancel . offer (pointers to) the standardized user-visible API that every subdevice should
offer; every device driver has to fill in these functions with their board-specific implementations. (Functionality for which Comedi
provides generic functions will, by definition, not show up in the device driver data structures.)

http://www.comedi.org
http://www.comedi.org

Comedi 156 / 161

The buf_change and munge function pointers offer functionality that is not visible to the user and for which the device driver
writer must provide a board-specific implementation: buf_change() is called when a change in the data buffer requires han-
dling; munge() transforms different bit-representations of DAQ values, for example from unsigned to 2’s complement.

6.2.1.3 comedi_device

The last data structure stores the information at the device level:

struct comedi_device_struct{
int use_count;
comedi_driver *driver;
void *private;
kdev_t minor;
char *board_name;
const void *board_ptr;
int attached;
int rt;
spinlock_t spinlock;
int in_request_module;

int n_subdevices;
comedi_subdevice *subdevices;
int options[COMEDI_NDEVCONFOPTS];

/* dumb */
int iobase;
int irq;

comedi_subdevice *read_subdev;
wait_queue_head_t read_wait;

comedi_subdevice *write_subdev;
wait_queue_head_t write_wait;

struct fasync_struct *async_queue;

void (*open)(comedi_device *dev);
void (*close)(comedi_device *dev);

};

6.2.1.4 comedi_async

The following data structure contains all relevant information: addresses and sizes of buffers, pointers to the actual data, and the
information needed for event handling:

struct comedi_async_struct{
void *prealloc_buf; /* pre-allocated buffer */
unsigned int prealloc_bufsz; /* buffer size, in bytes */
unsigned long *buf_page_list; /* physical address of each page */
unsigned int max_bufsize; /* maximum buffer size, bytes */
unsigned int mmap_count; /* current number of mmaps of prealloc_buf */

volatile unsigned int buf_write_count; /* byte count for writer (write completed) */
volatile unsigned int buf_write_alloc_count; /* byte count for writer (allocated for ←↩

writing) */
volatile unsigned int buf_read_count; /* byte count for reader (read completed)*/

unsigned int buf_write_ptr; /* buffer marker for writer */
unsigned int buf_read_ptr; /* buffer marker for reader */

Comedi 157 / 161

unsigned int cur_chan; /* useless channel marker for interrupt */
/* number of bytes that have been received for current scan */
unsigned int scan_progress;
/* keeps track of where we are in chanlist as for munging */
unsigned int munge_chan;

unsigned int events; /* events that have occurred */

comedi_cmd cmd;

// callback stuff
unsigned int cb_mask;
int (*cb_func)(unsigned int flags,void *);
void *cb_arg;

int (*inttrig)(comedi_device *dev,comedi_subdevice *s,unsigned int x);
};

6.2.1.5 comedi_driver

struct comedi_driver_struct{
struct comedi_driver_struct *next;

char *driver_name;
struct module *module;
int (*attach)(comedi_device *,comedi_devconfig *);
int (*detach)(comedi_device *);

/* number of elements in board_name and board_id arrays */
unsigned int num_names;
void *board_name;
/* offset in bytes from one board name pointer to the next */
int offset;

};

6.2.2 Generic driver support functions

The directory comedi contains a large set of support functions. Some of the most important ones are given below.

From comedi/comedi_fops.c, functions to handle the hardware events (which also runs the registered callback function),
to get data in and out of the software data buffer, and to parse the incoming functional requests:

void comedi_event(comedi_device *dev,comedi_subdevice *s,unsigned int mask);

int comedi_buf_put(comedi_async *async, sampl_t x);
int comedi_buf_get(comedi_async *async, sampl_t *x);

static int parse_insn(comedi_device *dev,comedi_insn *insn,lsampl_t *data,void *file);

The file comedi/kcomedilib/kcomedilib_main.c provides functions to register a callback, to poll an ongoing data
acquisition, and to print an error message:

int comedi_register_callback(comedi_t *d,unsigned int subdevice, unsigned int mask,int (* ←↩
cb)(unsigned int,void *),void *arg);

int comedi_poll(comedi_t *d, unsigned int subdevice);

void comedi_perror(const char *message);

Comedi 158 / 161

The file comedi/rt.c provides interrupt handling for real-time tasks (one interrupt per device!):

int comedi_request_irq(unsigned irq,void (*handler)(int, void *,struct pt_regs *), ←↩
unsigned long flags,const char *device,comedi_device *dev_id);

void comedi_free_irq(unsigned int irq,comedi_device *dev_id)

6.3 Board-specific functionality

The comedi/drivers subdirectory contains the board-specific device driver code. Each new card must get an entry in this
directory. Or extend the functionality of an already existing driver file if the new card is quite similar to that implemented in an
already existing driver. For example, many of the National Instruments DAQ cards use the same driver files.

To help device driver writers, Comedi provides the “skeleton” of a new device driver, in the comedi/drivers/skel.c file.
Before starting to write a new driver, make sure you understand this file, and compare it to what you find in the other already
available board-specific files in the same directory.

The first thing you notice in skel.c is the documentation section: the Comedi documentation is partially generated automat-
ically, from the information that is given in this section. So, please comply with the structure and the keywords provided as
Comedi standards.

The second part of the device driver contains board-specific static data structure and defines: addresses of hardware registers;
defines and function prototypes for functionality that is only used inside of the device driver for this board; the encoding of the
types and number of available channels; PCI information; etc.

Each driver has to register two functions which are called when you load and unload your board’s device driver (typically via a
kernel module):

mydriver_attach();
mydriver_detach();

In the “attach” function, memory is allocated for the necessary data structures, all properties of a device and its subdevices are
defined, and filled in in the generic Comedi data structures. As part of this, pointers to the low level instructions being supported
by the subdevice have to be set, which define the basic functionality. In somewhat more detail, the mydriver_attach()
function must:

• check and request the I/O port region, IRQ, DMA, and other hardware resources. It is convenient here if you verify the
existence of the hardware and the correctness of the other information given. Sometimes, unfortunately, this cannot be done.

• allocate memory for the private data structures.

• initialize the board registers and possible subdevices (timer, DMA, PCI, hardware FIFO, etc.).

• return 1, indicating success. If there were any errors along the way, you should return the appropriate (negative) error number.
If an error is returned, the mydriver_detach() function is called. The mydriver_detach() function should check any
resources that may have been allocated and release them as necessary. The Comedi core frees dev->subdevices and dev-

>private, so this does not need to be done in mydriver_detach().

• If the driver has the possibility to offer asynchronous data acquisition, you have to code an interrupt service routine, event
handling routines, and/or callback routines.

Typically, you will be able to implement most of the above-mentioned functionality by cut-and-paste from already existing
drivers. The mydriver_attach() function needs most of your attention, because it must correctly define and allocate the
(private and generic) data structures that are needed for this device. That is, each sub-device and each channel must get appro-
priate data fields, and an appropriate initialization. The good news, of course, is that Comedi provides the data structures and the
defines that fit very well with almost all DAQ functionalities found on interface cards. These can be found in the header files of
the include/linux/ directory.

Drivers with digital I/O subdevices should implement the following functions, setting the function pointers in the comedi_subdevice:

• insn_bits(): drivers set this if they have a function that supports reading and writing multiple bits in a digital I/O subdevice
at the same time. Most (if not all) of the drivers use this interface instead of insn_read and insn_write for DIO subdevices.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 159 / 161

• insn_config(): implements INSN_CONFIG instructions. Currently used for configuring the direction of digital I/O lines,
although will eventually be used for generic configuration of drivers that is outside the scope of the currently defined Comedi
interface.

Finally, the device driver writer must implement the insn_read() and insn_write() functions for the analog channels on
the card:

• insn_read(): acquire the inputs on the board and transfer them to the software buffer of the driver.

• insn_write(): transfer data from the software buffer to the card, and execute the appropriate output conversions.

In some drivers, you want to catch interrupts, and/or want to use the INSN_INTTRIG instruction. In this case, you must provide
and register these callback functions.

Implementation of all of the above-mentioned functions requires perfect knowledge about the hardware registers and addresses
of the interface card. In general, you can find some inspiration in the already available device drivers, but don’t trust that blind
cut-and-paste will bring you far. . .

6.4 Callbacks, events and interrupts

Continuous acquisition is tyically an asynchronous activity: the function call that has set the acquisition in motion has returned
before the acquisition has finished (or even started). So, not only the acquired data must be sent back to the user’s buffer “in the
background”, but various types of asynchronous event handling can be needed during the acquisition:

• The hardware can generate some error or warning events.

• Normal functional interrupts are generated by the hardware, e.g., signalling the filling-up of the card’s hardware buffer, or the
end of an acquisition scan, etc.

• The device driver writer can register a driver-supplied “callback” function, that is called at the end of each hardware interrupt
routine.

• Another driver-supplied callback function is executed when the user program launches an INSN_INTTRIG instruction. This
event handling is executed synchronously with the execution of the triggering instruction.

The interrupt handlers are registered through the functions mentioned before The event handling is done in the existing Comedi
drivers in statements such as this one:

s->async->events |= COMEDI_CB_EOA | COMEDI_CB_ERROR

It fills in the bits corresponding to particular events in the comedi_async data structure. The possible event bits are:

• COMEDI_CB_EOA: execute the callback at the “End-Of-Acquisition” (or “End-Of-Output”).

• COMEDI_CB_EOS: execute the callback at the “End-Of-Scan”.

• COMEDI_CB_OVERFLOW: execute the callback when a buffer overflow or underflow has occurred.

• COMEDI_CB_ERROR: execute the callback at the occurrence of an (undetermined) error.

6.5 Device driver caveats

A few things to strive for when writing a new driver:

• Some DAQ cards consist of different “layers” of hardware, which can each be given their own device driver. Examples are:
some of the National Instruments cards, that all share the same Mite PCI driver chip; the ubiquitous parallel port, that can be
used for simple digital IO acquisitions. If your new card has such a multi-layer design too, please take the effort to provide
drivers for each layer separately.

http://www.comedi.org
http://www.comedi.org

Comedi 160 / 161

• Your hardware driver should be functional appropriate to the resources allocated. I.e., if the driver is fully functional when
configured with an IRQ and DMA, it should still function moderately well with just an IRQ, or still do minor tasks without
IRQ or DMA. Does your driver really require an IRQ to do digital I/O? Maybe someone will want to use your driver just to do
digital I/O and has no interrupts available.

• Drivers are to have absolutely no global variables (apart from read-only, constant data, or data structures shared by all devices),
mainly because the existence of global variables immediately negates any possibility of using the driver for two devices. The
pointer dev->private should be used to point to a structure containing any additional variables needed by a driver/device
combination.

• Drivers should report errors and warnings via the comedi_error() function. (This is not the same function as the user-space
comedi_perror() function.)

6.6 Integrating the driver in the Comedi library

For integrating new drivers in the Comedi’s source tree the following things have to be done:

• Choose a sensible name for the source code file. Let’s assume here that you call it “mydriver.c”

• Put your new driver into comedi/drivers/mydriver.c.

• Edit comedi/drivers/Makefile.am and add mydriver.ko to the module_PROGRAMS list. Also add a line

mydriver_ko_SOURCES = mydriver.c

in the alphabetically appropriate place.

• Edit comedi/drivers/Kbuild and a line according to the type of driver:

obj-$(COMEDI_CONFIG_PCI_MODULES) += mydriver.o # for a PCI driver

obj-$(COMEDI_CONFIG_PCMCIA_MODULES) += mydriver.o # for a PCMCIA driver

obj-$(COMEDI_CONFIG_USB_MODULES) += mydriver.o # for a USB driver

obj-m += mydriver.o # for other driver types

• Run ./autogen.sh in the top-level comedi directory. You will need to have (a recent version of) autoconf and automake installed
to successfully run autogen.sh. Afterwards, your driver will be built along with the rest of the drivers when you run make.

• If you want to have your driver included in the Comedi distribution (you definitely want to :-)) send it to the Comedi mailing
list for review and integration. See the top-level README for details of the Comedi mailing list.) Note your work must be
licensed under terms compatible with the GNU GPL to be distributed as a part of Comedi.

7 Glossary

Application Program Interface (API)

The (documented) set of function calls supported by a particular application, by which programmers can access the func-
tionality available in the application.

buffer
Comedi uses permanently allocated kernel memory for streaming input and output to store data that has been measured by
a device, but has not been read by an application. These buffers can be resized by the Comedilib functions comedi_set
_buffer_size() and comedi_set_max_buffer_size() or the comedi_config utility.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi 161 / 161

buffer overflow
This is an error message that indicates that the driver ran out of space in a Comedi buffer to put samples. It means that the
application is not copying data out of the buffer quickly enough. Often, this problem can be fixed by making the Comedi
buffer larger. See comedi_set_buffer_size() for more information.

Differential IO
. . .

Direct Memory Access (DMA)

DMA is a method of transferring data between a device and the main memory of a computer. DMA operates differently on
ISA and PCI cards. ISA DMA is handled by a controller on the motherboard and is limited to transfers to/from the lowest
16 MB of physical RAM and can only handle a single segment of memory at a time. These limitations make it almost
useless. PCI (“bus mastering”) DMA is handled by a controller on the device, and can typically address 4 GB of RAM and
handle many segments of memory simultaneously. DMA is usually not the only means to data transfer, and may or may
not be the optimal transfer mechanism for a particular situation.

First In, First Out (FIFO)

Most devices have a limited amount of on-board space to store samples before they are transferred to the Comedi buffer.
This allows the CPU or DMA controller to do other things, and then efficiently process a large number of samples simul-
taneously. It also increases the maximum interrupt latency that the system can handle without interruptions in data.

Comedi command
Comedi commands are the mechanism that applications configure subdevices for streaming input and output.

command
See "Comedi command ".

configuration option

instruction
Comedi instructions are the mechanism used by applications to do immediate input from channels, output to channels, and
configuration of subdevices and channels.

instruction list
Instruction lists allow the application to perform multiple Comedi instructions in the same system call.

option
See Also "option list ".

option list
Option lists are used with the comedi_config utility to perform driver configuration.

See Also "configuration option ", "option ".

overrun
This is an error message that indicates that there was device-level problem, typically with trigger pulses occurring faster
than the board can handle.

poll
The term poll (and polling) is used for several different related concepts in Comedi. Comedi implements the poll()
system call for Comedi devices, which is similar to select(), and returns information about file descriptors that can be
read or written. Comedilib also has a function called comedi_poll(), which causes the driver to copy all available data
from the device to the Comedi buffer. In addition, some drivers may use a polling technique in place of interrupts.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

	Overview
	 What is a “device driver”?
	 Policy vs. mechanism
	 A general DAQ device driver package
	 DAQ signals
	 Device hierarchy
	 Acquisition terminology
	 DAQ functions
	 Supporting functionality

	 Configuration
	 Configuration
	 Getting information about a card

	 Writing Comedi programs
	 Your first Comedi program
	 Converting between integer data and physical units
	 Your second Comedi program
	 Asynchronous acquisition
	Further examples

	 Acquisition and configuration functions
	 Functions for single acquisition
	 Single digital acquisition
	 Single analog acquisition

	 Instructions for multiple acquisitions
	 The instruction data structure
	 Instruction execution

	 Instructions for configuration
	 Instruction for internal triggering
	 Commands for streaming acquisition
	 Executing a command
	 The command data structure
	 The command trigger events
	 The command flags
	 Anti-aliasing

	 Slowly-varying inputs
	 Experimental functionality
	 Digital input combining machines
	 Analog filtering configuration
	 Analog Output Waveform Generation
	 Extended Triggering
	 Analog Triggering
	 Bitfield Pattern Matching Extended Trigger
	 Counter configuration
	 One source plus auxiliary counter configuration
	 National Instruments General Purpose Counters/Timers (GPCT)
	 National Instruments RTSI trigger bus

	 Comedi reference
	 Headerfiles: comedi.h and comedilib.h
	 Constants and macros
	 CR_PACK
	 CR_PACK_FLAGS
	 RANGE_LENGTH (deprecated)
	 enum comedi_conversion_direction
	 enum comedi_io_direction
	 enum comedi_subdevice_type

	 Data types and structures
	 comedi_devinfo
	 comedi_t
	 sampl_t
	 lsampl_t
	 comedi_trig (deprecated)
	 comedi_sv_t (deprecated)
	 comedi_cmd
	 comedi_insn
	 comedi_range
	 comedi_krange
	 comedi_insnlist
	 comedi_polynomial_t

	Functions
	Core Functions
	comedi_close
	comedi_data_read
	comedi_data_read_n
	comedi_data_read_delayed
	comedi_data_read_hint
	comedi_data_write
	comedi_do_insn
	comedi_do_insnlist
	comedi_fileno
	comedi_find_range
	comedi_find_subdevice_by_type
	comedi_from_phys
	comedi_from_physical
	comedi_get_board_name
	comedi_get_driver_name
	comedi_get_maxdata
	comedi_get_n_channels
	comedi_get_n_ranges
	comedi_get_n_subdevices
	comedi_get_range
	comedi_get_subdevice_flags
	comedi_get_subdevice_type
	comedi_get_version_code
	comedi_internal_trigger
	comedi_lock
	comedi_maxdata_is_chan_specific
	comedi_open
	comedi_range_is_chan_specific
	comedi_set_global_oor_behavior
	comedi_to_phys
	comedi_to_physical
	comedi_unlock

	Asynchronous commands
	comedi_cancel
	comedi_command
	comedi_command_test
	comedi_get_buffer_contents
	comedi_get_buffer_read_offset
	comedi_get_buffer_write_offset
	comedi_get_buffer_read_count
	comedi_get_buffer_write_count
	comedi_get_buffer_size
	comedi_get_cmd_generic_timed
	comedi_get_cmd_src_mask
	comedi_get_max_buffer_size
	comedi_get_read_subdevice
	comedi_get_write_subdevice
	comedi_mark_buffer_read
	comedi_mark_buffer_written
	comedi_poll
	comedi_set_buffer_size
	comedi_set_max_buffer_size
	comedi_set_read_subdevice
	comedi_set_write_subdevice

	Calibration
	comedi_apply_calibration
	comedi_apply_parsed_calibration
	comedi_cleanup_calibration
	comedi_get_default_calibration_path
	comedi_get_hardcal_converter
	comedi_get_softcal_converter
	comedi_parse_calibration_file

	Digital I/O
	comedi_dio_bitfield2
	comedi_dio_config
	comedi_dio_get_config
	comedi_dio_read
	comedi_dio_write

	Error reporting
	comedi_errno
	comedi_loglevel
	comedi_perror
	comedi_strerror

	Extensions
	comedi_arm
	comedi_arm_channel
	comedi_digital_trigger_disable
	comedi_digital_trigger_enable_edges
	comedi_digital_trigger_enable_levels
	comedi_disarm
	comedi_disarm_channel
	comedi_get_clock_source
	comedi_get_gate_source
	comedi_get_hardware_buffer_size
	comedi_get_routing
	comedi_reset
	comedi_reset_channel
	comedi_set_clock_source
	comedi_set_counter_mode
	comedi_set_filter
	comedi_set_gate_source
	comedi_set_other_source
	comedi_set_routing

	Deprecated functions
	comedi_dio_bitfield
	comedi_get_buffer_offset
	comedi_get_timer
	comedi_sv_init
	comedi_sv_measure
	comedi_sv_update
	comedi_timed_1chan
	comedi_trigger

	Language bindings
	Python bindings

	 Kernel drivers
	 8255 -- generic 8255 support
	 acl7225b -- ADLINK NuDAQ ACL-7225b & compatibles
	 adl_pci6208 -- ADLINK PCI-6216V
	 adl_pci7230 -- Driver for the ADLINK PCI-7230 32 ch. isolated digital io board
	 adl_pci7250 -- Driver for the ADLINK PCI-7250 relay output & digital input card
	 adl_pci7296 -- Driver for the ADLINK PCI-7296 96 ch. digital io board
	 adl_pci7432 -- Driver for the ADLINK PCI-7432 64 ch. isolated digital io board
	 adl_pci8164 -- Driver for the ADLINK PCI-8164 4 Axes Motion Control board
	 adl_pci9111 -- ADLINK PCI-9111HR
	 adl_pci9112 -- ADLINK PCI-9112
	 adl_pci9118 -- ADLINK PCI-9118DG, PCI-9118HG, PCI-9118HR
	 adq12b -- driver for MicroAxial ADQ12-B data acquisition and control card
	 adv_pci1710 -- Advantech PCI-1710, PCI-1710HG, PCI-1711, PCI-1713, Advantech PCI-1720, PCI-1731
	 adv_pci1723 -- Advantech PCI-1723
	 adv_pci_dio -- Advantech PCI-1730, PCI-1733, PCI-1734, PCI-1735U, PCI-1736UP, PCI-1750, PCI-1751, PCI-1752, PCI-1753/E, PCI-1754, PCI-1756, PCI-1762
	 aio_aio12_8 -- Acces I/O Products PC-104 AIO12-8 Analog I/O Board
	 aio_iiro_16 -- Acces I/O Products PC-104 IIRO16 Relay And Isolated Input Board
	 amplc_dio200 -- Amplicon 200 Series Digital I/O
	 amplc_pc236 -- Amplicon PC36AT, PCI236
	 amplc_pc263 -- Amplicon PC263, PCI263
	 amplc_pci224 -- Amplicon PCI224, PCI234
	 amplc_pci230 -- Amplicon PCI230, PCI260 Multifunction I/O boards
	 c6xdigio -- Mechatronic Systems Inc. C6x_DIGIO DSP daughter card
	 cb_das16_cs -- Computer Boards PC-CARD DAS16/16
	 cb_pcidac -- Measurement Computing PCI Migration series boards
	 cb_pcidas -- MeasurementComputing PCI-DAS series with the AMCC S5933 PCI controller
	 cb_pcidas64 -- MeasurementComputing PCI-DAS64xx, 60XX, and 4020 series with the PLX 9080 PCI controller
	 cb_pcidda -- MeasurementComputing PCI-DDA series
	 cb_pcidio -- ComputerBoards' DIO boards with PCI interface
	 cb_pcimdas -- Measurement Computing PCI Migration series boards
	 cb_pcimdda -- Measurement Computing PCIM-DDA06-16
	 comedi_bond -- A driver to 'bond' (merge) multiple subdevices from multiple devices together as one.
	 comedi_parport -- Standard PC parallel port
	 comedi_rt_timer -- Command emulator using real-time tasks
	 comedi_test -- generates fake waveforms
	 contec_fit -- Contec F&eIT series modules
	 contec_pci_dio -- Contec PIO1616L digital I/O board
	 daqboard2000 -- IOTech DAQBoard/2000
	 das08 -- DAS-08 compatible boards
	 das08_cs -- DAS-08 PCMCIA boards
	 das16 -- DAS16 compatible boards
	 das16m1 -- CIO-DAS16/M1
	 das1800 -- Keithley Metrabyte DAS1800 (& compatibles)
	 das6402 -- Keithley Metrabyte DAS6402 (& compatibles)
	 das800 -- Keithley Metrabyte DAS800 (& compatibles)
	 dmm32at -- Diamond Systems mm32at driver.
	 dt2801 -- Data Translation DT2801 series and DT01-EZ
	 dt2811 -- Data Translation DT2811
	 dt2814 -- Data Translation DT2814
	 dt2815 -- Data Translation DT2815
	 dt2817 -- Data Translation DT2817
	 dt282x -- Data Translation DT2821 series (including DT-EZ)
	 dt3000 -- Data Translation DT3000 series
	 dt9812 -- Data Translation DT9812 USB module
	 fl512 -- unknown
	 gsc_hpdi -- General Standards Corporation High Speed Parallel Digital Interface rs485 boards
	 icp_multi -- Inova ICP_MULTI
	 ii_pci20kc -- Intelligent Instruments PCI-20001C carrier board
	 jr3_pci -- JR3/PCI force sensor board
	 ke_counter -- Driver for Kolter Electronic Counter Card
	 me4000 -- Meilhaus ME-4000 series boards
	 me_daq -- Meilhaus PCI data acquisition cards
	 mpc624 -- Micro/sys MPC-624 PC/104 board
	 mpc8260cpm -- MPC8260 CPM module generic digital I/O lines
	 multiq3 -- Quanser Consulting MultiQ-3
	 ni_6527 -- National Instruments 6527
	 ni_65xx -- National Instruments 65xx static dio boards
	 ni_660x -- National Instruments 660x counter/timer boards
	 ni_670x -- National Instruments 670x
	 ni_at_a2150 -- National Instruments AT-A2150
	 ni_at_ao -- National Instruments AT-AO-6/10
	 ni_atmio -- National Instruments AT-MIO-E series
	 ni_atmio16d -- National Instruments AT-MIO-16D
	 ni_daq_700 -- National Instruments PCMCIA DAQCard-700 DIO only
	 ni_daq_dio24 -- National Instruments PCMCIA DAQ-Card DIO-24
	 ni_labpc -- National Instruments Lab-PC (& compatibles)
	 ni_labpc_cs -- National Instruments Lab-PC (& compatibles)
	 ni_mio_cs -- National Instruments DAQCard E series
	 ni_pcidio -- National Instruments PCI-DIO32HS, PCI-DIO96, PCI-6533, PCI-6503
	 ni_pcimio -- National Instruments PCI-MIO-E series and M series (all boards)
	 ni_tio -- National Instruments general purpose counters
	 ni_tiocmd -- National Instruments general purpose counters command support
	 pcl711 -- Advantech PCL-711 and 711b, ADLINK ACL-8112
	 pcl724 -- Advantech PCL-724, PCL-722, PCL-731 ADLINK ACL-7122, ACL-7124, PET-48DIO
	 pcl725 -- Advantech PCL-725 (& compatibles)
	 pcl726 -- Advantech PCL-726 & compatibles
	 pcl730 -- Advantech PCL-730 (& compatibles)
	 pcl812 -- Advantech PCL-812/PG, PCL-813/B, ADLINK ACL-8112DG/HG/PG, ACL-8113, ACL-8216, ICP DAS A-821PGH/PGL/PGL-NDA, A-822PGH/PGL, A-823PGH/PGL, A-826PG, ICP DAS ISO-813
	 pcl816 -- Advantech PCL-816 cards, PCL-814
	 pcl818 -- Advantech PCL-818 cards, PCL-718
	 pcm3724 -- Advantech PCM-3724
	 pcm3730 -- PCM3730
	 pcmad -- Winsystems PCM-A/D12, PCM-A/D16
	 pcmda12 -- A driver for the Winsystems PCM-D/A-12
	 pcmmio -- A driver for the PCM-MIO multifunction board
	 pcmuio -- A driver for the PCM-UIO48A and PCM-UIO96A boards from Winsystems.
	 poc -- Generic driver for very simple devices
	 quatech_daqp_cs -- Quatech DAQP PCMCIA data capture cards
	 rtd520 -- Real Time Devices PCI4520/DM7520
	 rti800 -- Analog Devices RTI-800/815
	 rti802 -- Analog Devices RTI-802
	 s526 -- Sensoray 526 driver
	 s626 -- Sensoray 626 driver
	 serial2002 -- Driver for serial connected hardware
	 skel -- Skeleton driver, an example for driver writers
	 ssv_dnp -- SSV Embedded Systems DIL/Net-PC
	 unioxx5 -- Driver for Fastwel UNIOxx-5 (analog and digital i/o) boards.
	 usbdux -- Driver for USB-DUX-D of INCITE Technology Limited
	 usbduxfast -- Driver for USB-DUX-FAST of INCITE Technology Limited
	 usbduxsigma -- Driver for USB-DUX-SIGMA of INCITE Technology Limited

	 Writing a Comedi driver
	 Communication user-space — kernel-space
	 Generic functionality
	 Data structures
	 comedi_lrange
	 comedi_subdevice
	 comedi_device
	 comedi_async
	 comedi_driver

	 Generic driver support functions

	 Board-specific functionality
	 Callbacks, events and interrupts
	 Device driver caveats
	 Integrating the driver in the Comedi library

	 Glossary

