How to Build Csound 6 and CsoundQt on Windows

Michael Gogins
michael.gogins@gmail.com
9 January 2014
Introduction
This document provides up to date instructions for building Csound 6 and CsoundQt on Windows.

This document should be updated in reasonable detail with each release of Csound 6 for Windows, and pushed to Git head.

As a result of efforts to improve and simplify Csound's build system, which had become quite tedious, the build system and the installer for Csound 6 are different from what they were for Csound 5.

Csound 5 uses SCons for building, Csound 6 uses CMake. Csound 5 uses a Nullsoft installer script that provides many options and sets some environment variables, Csound 6 has an Inno Setup Compiler script.

Filesystem
The conceit of these instructions is that Csound is built in a standard Linux environment (which is simulated using MSys), using the standard GNU compiler (which is MinGW). To assist us in this delusion:

· Toolchain binaries must go in the system path: either /usr/bin or /usr/local/bin for binaries that are designed for MinGW or MSys, or the usual Program Files directories for regular Windows programs. It doesn't really matter where the tool executables actually go, as long as they are in the system PATH environment variable. So they can go where their Windows installers by default puts them.

· Third party software that we simply install can go /usr/opt or else where their Windows installers by default puts them.

· For third party software that we build, we install sources into /usr/local/src.

· If there is an install target, we make the install targets which should, normally, end up in the more or less standard /usr/local/bin, /usr/local/lib, and /usr/local/include.

· If there is no install target, we leave the third party software where it was built.
Note: /usr/local in this document is relative to the MSys directory and would actually be something like C:\msys\local.

Code Generation
Csound 6 for Windows is built for the 32 bit architecture. Code is built optimized for release but also including debugging information. Code generation for all builds must be for release versions of all runtime libraries and all third party libraries.
Not only all components of Csound and CsoundAC, but also all third-party libraries that Csound links with dynamically – including Qt, FLTK, PortAudio, CsoundQt, and FluidSynth – must be built with code generated for propagating exceptions across image boundaries (dwarf2), and using the Posix threading model.
In general, at least the following compiler options should be used for building all Csound related code. The reason for the stack realignment option is given in:
 http://stackoverflow.com/questions/6716654/segmentation-fault-using-openmp-andand-sse.

C Options
-g -O2 -fopenmp -march=nocona -mstackrealign -DNDEBUG -I/usr/local/include
C++ Options
-g -O2 -std=gnu++11 -fopenmp -march=nocona -mstackrealign -DNDEBUG -I/usr/local/include
Toolchain

Tools are listed more or less in the order they should be installed.

MinGW Compiler
Updated 12 October 2013. All C++ binaries that are packaged with Csound must be built with the same C++ ABI. In practice, this means building everything with the same compiler. Download the MinGW-build installer from http://sourceforge.net/projects/mingwbuilds/files/latest/download?source=files and run it. Install to a directory such as D:/mingw32-4.8.1.

In 4.8.1, you must comment out, in cmath, the line using ::hypot as that function is actually a macro.

Replace the MinGW-builds debugger, which is crap, with the latest one from http://sourceforge.net/projects/mingw/files/MinGW/Extension/gdb/.
MSys
Checked 25 July 2013. In addition to the compiler, building Csound and its dependencies requires some other tools. Install MSys from http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/msys%2B7za%2Bwget%2Bsvn%2Bgit%2Bmercurial%2Bcvs-rev13.7z/download. This includes bison, flex, autotools and some other goodies.

Edit the MSys etc/fstab file to map the MinGW directory to /mingw.
The Qt SDK
Updated 12 October 2013. At the moment, the prebuilt Qt SDK is subject to the MinGW bug mentioned above. Download Qt sources from http://qt-project.org/downloads and build them in a plain Windows console with only the MinGW bin directory in the PATH with the command:

configure.bat -debug-and-release -developer-build -opensource -confirm-license -nomake examples -nomake tests -no-angle -opengl desktop -platform win32-g++

CMake
Updated 13 October 2013. Csound itself is built using CMake.

Install CMake from http://www.cmake.org/.

SCons
Checked 26 July 2013. SCons (Software Construction) is a build system that is particularly easy to use. It is used here to make custom builds of some third-party software that lacks a Windows build system, or has a Windows build system that lacks features Csound needs..

Install SCons for Windows from http://www.scons.org/.

Git
Checked 26 July 2013. Csound 6 source code is maintained in a Git repository at http://sourceforge.net/p/csound/csound6-git/ci/29e5d7338d30a86dae4f2eed20f31d38dd73caff/tree/.

Install Git from http://git-scm.com/download/win.

CUnit
Done 26 July 2013. CUnit is used to run unit tests for Csound.

Install CUnit source code from http://cunit.sourceforge.net/ in /usr/local/src. Configure with ./configure.

Make with make.

Install with make install.

Java SDK
Checked 26 July 2013. The Java SDK is used for generating Java bindings to the Csound API and CsoundAC. Some examples of Java programs using Csound also require the SDK.

Java is also used to build Csound apps for iOS and Android.

Install the Java SE SDK from http://www.oracle.com/technetwork/java/javase/downloads/index.html.

SWIG
Updated 13 October 2013. SWIG is used for automatically generating the bindings to the Csound API and to CsoundAC for the Python, Java, and Lua programming languages.

Install SwigWin from http://www.swig.org/download.html.

Python
Checked 26 July 2013. The Csound API has a Python interface, and some Csound examples use Python.

Install Python from http://www.python.org/ftp/python/2.7.3/python-2.7.3.msi.

LuaJIT
Done 26 July 2013. The Csound API has a Lua interface, and the Lua opcodes require LuaJIT in particular, which is bundled with the Csound Windows distribution.

Install LuaJIT source code from http://luajit.org/ in /usr/src.

Build LuaJIT with make.

Install with make install.

LaTeX
Checked 26 July 2013. LaTeX is used for typesetting the Csound and Csound AC tutorials that are included in the Windows release. Install proTeXT from http://www.tug.org/protext/.

Doxygen
Checked 26 July 2013. Doxygen is used to generate the Csound API and CsoundAC API documentation from comments in the source code.

Install Doxygen to the current version (1.8.2-20121118) from http://www.stack.nl/~dimitri/doxyge

 HYPERLINK "http://www.stack.nl/~dimitri/doxygen"
n.

Dot
Checked 26 July 2013. Install ATT Graphviz to version 2.30.1 from http://www.graphviz.org
GTK+ Bundle
Done 17 August 2013. Fluidsynth and perhaps some other third party packages require some GTK and GNU libraries not supplied with Msys.

Download the all-in-one GTK+ stack from http://www.gtk.org/download/index.php. Unzip it into the Msys directory so bin, lib, include, etc. all match.
DocBook
Done 26 July 2013. DocBook is used to generate the Csound Reference Manual from XML source files.
Install the current Windows build of xsltproc and libxml2 from http://www.zlatkovic.com/libxml.en.html into /usr/local.

Install the current http://www.oasis-open.org/docbook/xml/4.5/docbook-xml-4.5.zip DocBook XML DTDs. Copy this tree to one directory above the Csound manual directory.
Install the current DocBook XSL stylesheets from http://sourceforge.net/project/downloading.php?group_id=21935&filename=docbook-xsl-1.76.1.zip into /usr/local/opt.

Third Party Packages
In general, the most recent versions of all tools and third-party packages that are in general use should be used for Csound.

Sometimes this is packaged as a released version, sometimes it is packaged as a beta version, sometimes it is always built from sources. If in doubt, search the World Wide Web or check mailing lists for the software.
If the library does not come pre-built for Windows or with a functional build system for MinGW/MSys, create a CMake file for the library.
Boost
Done 26 July 2013. Parts of boost are required by CsoundAC.

Install boost source code from http://www.boost.org/.

We use only the header files, so just copy the boost directory and all its contents to /usr/local/include.

FLTK
Done 17 August 2013. FLTK is used by the FLTK widgets opcodes.

Install the latest FLTK 1.3 source code from http://www.fltk.org/ into /usr/local/src.

Configure with ./configure --enable-threads --enable-gl --enable-shared --enable-localjpeg --enable-localzlib –enable-localpng.

Make with make.

Install with make install.

Eigen
Done 26 July 2013. Eigen is a C++ library for matrix arithmetic and linear algebra, used by CsoundAC.

Install Eigen source code from http://eigen.tuxfamily.org/index.php?title=Main_Page in /usr/local/include.

Eigen is a header file-only library and does not need to be built or installed.

However, there is another bug in the MinGW 4.8.1 compiler that causes any #pragma GCC optimize to cause an out of memory error in large files with cc1plus.exe. About line 25 of the Eigen Core header, comment out the pragma so it reads like this:

// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
#if defined(__MINGW32__) && EIGEN_GNUC_AT_LEAST(4,6)
// #pragma GCC optimize ("-fno-ipa-cp-clone")
#endif

Fluidsynth
Done 26 July 2013. FluidSynth is used by the fluid opcodes to provide an all-in-one sampled synthesis solution for Csound.

Install FluidSynth source code from http://sourceforge.net/projects/fluidsynth/ in /usr/local/src.

Csound does not require any of FluidSynth's internal audio or soundfile drivers. Configure with cmake-gui . &. Change DEFAULT_SOUNDFONT to C:\\soundfonts\\default.sf2. Add -march=nocona to the CFLAGS. Set CMAKE_INSTALL_PREFIX to D:/msys/local.
Make with mingw32-make.

Install with mingw32-make install.
gmm++
Done 26 July 2013. The linear algebra opcodes use gmm++ to implement efficient matrix arithmetic and some matrix decompositions.

Download the gmm++ standalone source code from http://download.gna.org/getfem/html/homepage/download.html.

This is a header file only library. Install the gmm-4.2/include/gmm directory into /usr/local/include.

libsndfile
Done 26 July 2013. This is required by Csound for reading and writing soundfiles. It is a pre-built library.

Install libsndfile from http://www.mega-nerd.com/libsndfile/ in /usr/opt.

MusicXML
Done 26 July 2013. MusicXML is used by the CppSound class in the Csound API to import MusicXML files.

Install the MusicXML source code in /usr/local with git clone http://code.google.com/p/libmusicxml.

Configure with cmake-gui cmake, setting CMAKE_INSTALL_PREFIX to D:/msys/local. Set CMAKE_BUILD_TYPE to RelWithDebInfo. Add -march=nocona to CFLAGS.
Make with mingw32-make in the cmake directory.

Install with mingw32-make install in the cmake directory.

OpenSoundControl
Done 28 July 2013. Csound uses the OpenSoundControl protocol in the OSC opcodes for low-latency network communications to and from Csound.

Update liblo tag 0.26 from the tarball at http://liblo.sourceforge.net (not SVN!).

First, as libtool for shared libraries is useless for MinGW, configure with ./configure –enable-static –disable-shared to generate config.h.

Make with mingw32-make.

Install with mingw32-make install.

In Csound's CmakeCache.txt, set CMAKE_STANDARD_CXX_LIBRARIES to include -lwsock32 -lws2_32.

Pure Data
Done 28 July 2013. Install Pure Data source code using Git from git://pure-data.git.sourceforge.net/gitroot/pure-data/pure-data into usr/local/src.

Steinberg Proprietary SDKs
Done 28 July 2013. Steinberg's VST SDK is used by CsoundVST and the vst4cs opcodes, the VSTModuleArchitectureSDK is used for the ScoreGenerator VST plugin that is part of CsoundAC, and the ASIO SDK is used by the PortAudio library that Csound uses for real-time audio input and output.

Install the VST SDK 2.4 from http://www.steinberg.net/en/company/3rd_party_developer.html in /usr/local/src/Steinberg.

Install the ASIO SDK in /usr/local/src/asiosdk2
Please note, these SDKs are proprietary software and you must agree to Steinberg's license terms for use.
PortAudio
Updated 13 October 2013.

Use the precompiled Windows binary from https://github.com/adfernandes/precompiled-portaudio-windows.

Install in /usr/local/include and /usr/local/lib.

PortMidi
Done 28 July 2013. Csound can use the PortMidi library for MIDI input and output.

Install the PortMidi source code using Subversion from http://portmedia.sourceforge.net.
Configure with cmake-gui.
Make with make.
Run the test programs to ensure that the build works.

PortSMF
Done 28 July 2013. PortSMF is used by CsoundAC for importing and exporting standard MIDI files (format 1).

The PortSMF source code has been incorporated into the Csound 6 Git repository. From time to time, replace the Csound 6 sources with current PortSMF sources from http://portmedia.sourceforge.net/.

Synthesis Toolkit in C++ (STK)
Done 28 July 2013. Install the STK source code from https://ccrma.stanford.edu/software/stk/ in /usr/local/src.

Make sure you do not define a RAWWAVE_PATH environment variable in your build environment.

Configure with ./configure.

Edit Stk.h, and make sure to #include <cstring> before any other #include.

Make with make (not mingw32-make).

Windows SDK

The Windows SDK for Windows 8 contains header files and libraries that used to belong to the DirectX SDK, and that are used by some third-party dependencies of Csound, such as PortAudio, which we have to build.

Install the Windows SDK from http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx. Currently, this does not include Visual Studio, but that is OK.

Qt SDK
Done 25 July 2013. CsoundQt uses the Qt SDK from http://qt-project.org/. Currently, the executable packages available for Qt are not binary compatible with the toolchain described here, so it is necessary to build the Qt libraries from source.

Obtain the Qt libraries source code from http://qt-project.org/downloads.

Unpack the zip file.

Open a plain Windows console with MinGW in the PATH. Change to the SDK source code directory and configure Qt with:

D:\qt-everywhere-opensource-src-5.1.0>configure.bat -release -force-debug-info -skip qtjsbackend -opensource -confirm-license -nomake demos -nomake examples -nomake tests -no-angle -opengl desktop -nomake webkit -nomake webkit-examples

Compile Qt with:

make CXXFLAGS="-g -O2 -mstackrealign -march=nocona -fopenmp -DNDEBUG"

Building Csound 6

Create and/or update a shell script to set up all environment variables and paths for building Csound and for running Csound from and in the build environment. This is an example of such a script (6env):

#!/bin/sh

echo "Configure for development..."

export PATH=${PATH}:/c/Program_Files_x86/SciTE

export PATH=${PATH}:/c/Program_Files_x86/Git/bin

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/bin

export PATH=${PATH}:/c/Program_Files_x86/swigwin-2.0.10

export PATH=${PATH}:/c/Python27

echo "Configure for Android/ARM, armeabi-v7a (ARMv7 VFP), Android 2.3.3+///"

export SDK=/d/Android/adt-bundle-windows-x86-20130514/sdk

export NDK=/d/Android/android-ndk-r8e

export ANDROID_NDK_ROOT=$NDK

export CSOUND_HOME=/c/Users/new/csound-csound6-git

export NDK_MODULE_PATH=${CSOUND_HOME}/android/pluginlibs

export PATH=${PATH}:$NDK_MODULE_PATH

export NDKABI=9

export NDKVER=$NDK/toolchains/arm-linux-androideabi-4.7

export NDKP=$NDKVER/prebuilt/windows/bin/arm-linux-androideabi-

export NDKF="--sysroot $NDK/platforms/android-$NDKABI/arch-arm"

export NDKARCH="-march=armv7-a -mfloat-abi=softfp -Wl,--fix-cortex-a8"

echo "Configure shared libraries and programs needed to run Csound..."

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/opt/Mega-Nerd/libsndfile/bin

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/portaudio

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/portmidi

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/fluidsynth/src/.libs

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/libmusicxml-3.00-src/cmake

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/luajit-2.0/src

export PATH=${PATH}:/c/Program_Files/Modartt/Pianoteq\ 4

export PATH=${PATH}:/c/Program_Files/BWF_MetaEdit_CLI_Windows_x64

export PATH=${PATH}:/c/Program_Files_x86/sox-14-4-1

export PATH=${PATH}:/c/Program_Files_x86/Audacity

export PATH=${PATH}:/c/Program_Files_x86/Lame\ For\ Audacity

export PATH=/c/Users/new/csound-csound6-git:${PATH}

echo "Configure environment variables needed to run Csound..."

export OPCODE6DIR64=/c/Users/new/csound-csound6-git

export RAWWAVE_PATH=/c/mingw32-4.7.2/msys/1.0/local/src/stk-4.4.4/rawwaves

export PYTHONPATH=/c/Users/new/csound-csound6-git

echo "Configure environment variables needed to run LuaJIT with ufo libraries..."

export LUA_PATH="./?.lua;../?.lua;D:/ufo/?.lua;D:/ufo/ffi/?.lua;D:/ufo/bin/Windows/x86/?.lua;"

export LUA_CPATH="D:/ufo/?;D:/ufo/bin/?;"

export PATH=${PATH}:/d/ufo/bin

echo

In the Msys shell, change to the Csound root directory and execute source 6env to actually create your Csound environment.

Update the Csound source code by executing git pull.

Execute cmake-gui . & to configure your Cmake build system for your environment. When using CMake, generate MSys makefiles, not MinGW makefiles. Pay attention to CMake's error messages. It may be that a variable for an include path or library is missing from the initial state of the cache. Go ahead and add the variable called for by the error message. Configure for double-precision samples.
Change to examples/java and execute make to build the Java example jars.
Build the examples for the manual using a command line such as python csd2docbook.py -a.
Build the manual itself using a command line such as mingw32-make html-dist XSL_BASE_PATH=/usr/local/opt/docbook-xsl-1.76.1.
Build the API reference by executing doxygen Doxyfile and doxygen Doxyfile-CsoundAC.
Do not strip debugging information out of the binaries, this might conceivably come in useful for remote debugging and is a relatively small part of the package.
Building CsoundQt
In the Csound build environment, obtain the CsoundQt source from SourceForge at http://sourceforge.net/projects/qutecsound using git:

git clone git://git.code.sf.net/p/qutecsound/code qutecsound-code

In the CsoundQt source directory create a config.user.pri file containing paths to third party packages customized for your Csound build environment, such as:

CSOUND_INTERFACES_INCLUDE_DIR = C:\\Users\\new\\csound-csound6-git\\interfaces

DEFAULT_CSOUND_API_INCLUDE_DIRS = C:\\Users\\new\\csound-csound6-git\\include C:\\Users\\new\\csound-csound6-git\\interfaces

DEFAULT_CSOUND_LIBRARY_DIRS = "C:\\Users\new\\csound-csound6-git"

DEFAULT_LIBSNDFILE_INCLUDE_DIRS = "C:\\mingw32-4.7.2\\msys\\1.0\\opt\\Mega-Nerd\\libsndfile\\include"

DEFAULT_LIBSNDFILE_LIBRARY_DIRS = "C:\\mingw32-4.7.2\\msys\\1.0\\opt\\Mega-Nerd\\libsndfile\\bin"

build32: DEFAULT_CSOUND_LIBS = csound32.dll

build64: DEFAULT_CSOUND_LIBS = csound64.dll

LIBSNDFILE_LIB = libsndfile-1.dll

DEFAULT_PYTHON_INCLUDE_DIRS = "C:\\Python27\\include"

DEFAULT_PYTHONQT_SRC_DIRS = "$$(PROGRAMFILES)\\PythonQt"

Download RtMidi from http://www.music.mcgill.ca/~gary/rtmidi/ and unzip in the qutecsound directory.

To configure and create the makefile, execute:

qmake qcs.pro CONFIG+=csound6 CONFIG+=debug CONFIG+=rtmidi

To build CsoundQt, execute:

make CXXFLAGS="-DUSE_QT5 -DCSOUND6 -DUSE_DOUBLE -march=nocona -g -O2 -fopenmp -mstackrealign"

Building the Installer
Build the installer using Inno Setup Compiler from http://

 HYPERLINK "http://www.jrsoftware.org/isinfo.php"
www.jrsoftware.org/isinfo.php

 HYPERLINK "http://nsis.sourceforge.net/Main_Page"
 with the NONFREE (VST) stuff.

The deployment of CsoundQt takes special care. The Qt libraries load some DLLs through dynamic linking and other DLLs as plugin modules. There are no helpful error messages or logs. Either the Qt plugins load, or they don't and the application crashes. It seems the only way to get it straight is:

· Use the Dependency Walker utility to identify the dynamically linked Qt DLLs and put them into the Csound bin directory.

· Use the Process Explorer utility to identify the Qt plugins that CsoundQt loads when it is running. These go into specific subdirectories of the Csound bin directory as follows. Having too many Qt libraries apparently is as bad as not having the required ones. Currently the list of Qt libraries is:

mkg@sorabji /c/Program_Files_x86/csound6/bin

$ ls -ll Qt*.dll platforms plugins/*

-rwxr-xr-x 1 mkg Administrators 9527492 Jul 25 23:22 Qt5Core.dll

-rwxr-xr-x 1 mkg Administrators 9678079 Jul 25 23:26 Qt5Gui.dll

-rwxr-xr-x 1 mkg Administrators 783361 Jul 25 23:32 Qt5PrintSupport.dll

-rwxr-xr-x 1 mkg Administrators 12456443 Jul 25 23:31 Qt5Widgets.dll

-rwxr-xr-x 1 mkg Administrators 611324 Jul 25 23:23 Qt5Xml.dll

platforms:

total 2354

-rwxr-xr-x 1 mkg Administrators 2409481 Aug 2 19:27 qwindows.dll

plugins/accessible:

total 605

-rwxr-xr-x 1 mkg Administrators 618749 Aug 2 19:27 qtaccessiblewidgets.dll

plugins/imageformats:

total 2450

-rwxr-xr-x 1 mkg Administrators 131180 Aug 2 19:27 qgif.dll

-rwxr-xr-x 1 mkg Administrators 135293 Aug 2 19:27 qico.dll

-rwxr-xr-x 1 mkg Administrators 409066 Aug 2 19:27 qjpeg.dll

-rwxr-xr-x 1 mkg Administrators 628497 Aug 2 19:27 qmng.dll

-rwxr-xr-x 1 mkg Administrators 132618 Aug 2 19:27 qsvg.dll

-rwxr-xr-x 1 mkg Administrators 197247 Aug 2 19:27 qsvgicon.dll

-rwxr-xr-x 1 mkg Administrators 128440 Aug 2 19:27 qtga.dll

-rwxr-xr-x 1 mkg Administrators 618469 Aug 2 19:27 qtiff.dll

-rwxr-xr-x 1 mkg Administrators 123177 Aug 2 19:27 qwbmp.dll

plugins/printsupport:

total 102

-rwxr-xr-x 1 mkg Administrators 103642 Jul 25 23:34 windowsprintersupport.dll
Build the installer again, this time without the NONFREE stuff.

Perform functional tests below.
Update this document to reflect any changes in procedure or dependencies.

Label Csound in Git for the Windows release.

Upload the free software installer to SourceForge and update the release package.

Upload the NONFREE installer to http://www.michael-gogins.com/.

