
 CUPS API Programming Guide

 Michael R Sweet

 Copyright 2007-2017 by Apple Inc.

 Overview

 The IPP Sample project provides APIs for IPP client and server applications in the "cups" library. Most library functions are accessed by including the <cups/cups.h> header, while the raster functions are found in the <cups/raster.h> header.

 Compiling Programs

 The library can be used from any C, C++, or Objective C program. The method of compiling against the library varies depending on the operating system and installation of the IPP Sample project.

 The following simple program lists the available printers on the network:

#include <stdio.h>
#include <cups/cups.h>

int main(void)
{
 int i;
 cups_dest_t *dests, *dest;
 int num_dests = cupsGetDests(&dests);

 for (i = num_dests, dest = dests; i > 0; i --, dest ++)
 {
 if (dest->instance)
 printf("%s/%s\n", dest->name, dest->instance);
 else
 puts(dest->name);
 }

 return (0);
}

 CUPS API

 The CUPS API provides the convenience functions needed to support applications, filters, printer drivers, and backends that need to interface with the CUPS scheduler.

 Clients and Servers

 CUPS is based on the Internet Printing Protocol ("IPP"), which allows clients (applications) to communicate with a server (the scheduler) to get a list of printers, send print jobs, and so forth. You identify which server you want to communicate with using a pointer to the opaque structure http_t. All of the examples in this document use the CUPS_HTTP_DEFAULT constant, referring to the default connection to the scheduler. The HTTP and IPP APIs document provides more information on server connections.

 Printers and Classes

 Printers and classes (collections of printers) are accessed through the cups_dest_t structure which includes the name (name), instance (instance - a way of selecting certain saved options/settings), and the options and attributes associated with that destination (num_options and options). Destinations are created using the cupsGetDests function and freed using the cupsFreeDests function. The cupsGetDest function finds a specific destination for printing:

#include <cups/cups.h>

cups_dest_t *dests;
int num_dests = cupsGetDests(&dests);
cups_dest_t *dest = cupsGetDest("name", NULL, num_dests, dests);

/* do something with dest */

cupsFreeDests(num_dests, dests);

 Passing NULL to cupsGetDest for the destination name will return the default destination. Similarly, passing a NULL instance will return the default instance for that destination.

 Table 1: Printer Attributes

 	Attribute Name
 	Description

 	"auth-info-required"
 	The type of authentication required for printing to this destination: "none", "username,password", "domain,username,password", or "negotiate" (Kerberos)

 	"printer-info"
 	The human-readable description of the destination such as "My Laser Printer".

 	"printer-is-accepting-jobs"
 	"true" if the destination is accepting new jobs, "false" if not.

 	"printer-is-shared"
 	"true" if the destination is being shared with other computers, "false" if not.

 	"printer-location"
 	The human-readable location of the destination such as "Lab 4".

 	"printer-make-and-model"
 	The human-readable make and model of the destination such as "HP LaserJet 4000 Series".

 	"printer-state"
 	"3" if the destination is idle, "4" if the destination is printing a job, and "5" if the destination is stopped.

 	"printer-state-change-time"
 	The UNIX time when the destination entered the current state.

 	"printer-state-reasons"
 	Additional comma-delimited state keywords for the destination such as "media-tray-empty-error" and "toner-low-warning".

 	"printer-type"
 	The cups_printer_t value associated with the destination.

 Options

 Options are stored in arrays of cups_option_t structures. Each option has a name (name) and value (value) associated with it. The cups_dest_t num_options and options members contain the default options for a particular destination, along with several informational attributes about the destination as shown in Table 1. The cupsGetOption function gets the value for the named option. For example, the following code lists the available destinations and their human-readable descriptions:

#include <cups/cups.h>

cups_dest_t *dests;
int num_dests = cupsGetDests(&dests);
cups_dest_t *dest;
int i;
const char *value;

for (i = num_dests, dest = dests; i > 0; i --, dest ++)
 if (dest->instance == NULL)
 {
 value = cupsGetOption("printer-info", dest->num_options, dest->options);
 printf("%s (%s)\n", dest->name, value ? value : "no description");
 }

cupsFreeDests(num_dests, dests);

 You can create your own option arrays using the cupsAddOption function, which adds a single named option to an array:

#include <cups/cups.h>

int num_options = 0;
cups_option_t *options = NULL;

/* The returned num_options value is updated as needed */
num_options = cupsAddOption("first", "value", num_options, &options);

/* This adds a second option value */
num_options = cupsAddOption("second", "value", num_options, &options);

/* This replaces the first option we added */
num_options = cupsAddOption("first", "new value", num_options, &options);

 Use a for loop to copy the options from a destination:

#include <cups/cups.h>

int i;
int num_options = 0;
cups_option_t *options = NULL;
cups_dest_t *dest;

for (i = 0; i < dest->num_options; i ++)
 num_options = cupsAddOption(dest->options[i].name, dest->options[i].value,
 num_options, &options);

 Use the cupsFreeOptions function to free the options array when you are done using it:

cupsFreeOptions(num_options, options);

 Print Jobs

 Print jobs are identified by a locally-unique job ID number from 1 to 231-1 and have options and one or more files for printing to a single destination. The cupsPrintFile function creates a new job with one file. The following code prints the CUPS test page file:

#include <cups/cups.h>

cups_dest_t *dest;
int num_options;
cups_option_t *options;
int job_id;

/* Print a single file */
job_id = cupsPrintFile(dest->name, "/usr/share/cups/data/testprint.ps",
 "Test Print", num_options, options);

 The cupsPrintFiles function creates a job with multiple files. The files are provided in a char * array:

#include <cups/cups.h>

cups_dest_t *dest;
int num_options;
cups_option_t *options;
int job_id;
char *files[3] = { "file1.pdf", "file2.pdf", "file3.pdf" };

/* Print three files */
job_id = cupsPrintFiles(dest->name, 3, files, "Test Print", num_options, options);

 Finally, the cupsCreateJob function creates a new job with no files in it. Files are added using the cupsStartDocument, cupsWriteRequestData, and cupsFinishDocument functions. The following example creates a job with 10 text files for printing:

#include <cups/cups.h>

cups_dest_t *dest;
int num_options;
cups_option_t *options;
int job_id;
int i;
char buffer[1024];

/* Create the job */
job_id = cupsCreateJob(CUPS_HTTP_DEFAULT, dest->name, "10 Text Files",
 num_options, options);

/* If the job is created, add 10 files */
if (job_id > 0)
{
 for (i = 1; i <= 10; i ++)
 {
 snprintf(buffer, sizeof(buffer), "file%d.txt", i);

 cupsStartDocument(CUPS_HTTP_DEFAULT, dest->name, job_id, buffer,
 CUPS_FORMAT_TEXT, i == 10);

 snprintf(buffer, sizeof(buffer),
 "File %d\n"
 "\n"
 "One fish,\n"
 "Two fish,\n
 "Red fish,\n
 "Blue fish\n", i);

 /* cupsWriteRequestData can be called as many times as needed */
 cupsWriteRequestData(CUPS_HTTP_DEFAULT, buffer, strlen(buffer));

 cupsFinishDocument(CUPS_HTTP_DEFAULT, dest->name);
 }
}

 Once you have created a job, you can monitor its status using the cupsGetJobs function, which returns an array of cups_job_t structures. Each contains the job ID (id), destination name (dest), title (title), and other information associated with the job. The job array is freed using the cupsFreeJobs function. The following example monitors a specific job ID, showing the current job state once every 5 seconds until the job is completed:

#include <cups/cups.h>

cups_dest_t *dest;
int job_id;
int num_jobs;
cups_job_t *jobs;
int i;
ipp_jstate_t job_state = IPP_JOB_PENDING;

while (job_state < IPP_JOB_STOPPED)
{
 /* Get my jobs (1) with any state (-1) */
 num_jobs = cupsGetJobs(&jobs, dest->name, 1, -1);

 /* Loop to find my job */
 job_state = IPP_JOB_COMPLETED;

 for (i = 0; i < num_jobs; i ++)
 if (jobs[i].id == job_id)
 {
 job_state = jobs[i].state;
 break;
 }

 /* Free the job array */
 cupsFreeJobs(num_jobs, jobs);

 /* Show the current state */
 switch (job_state)
 {
 case IPP_JOB_PENDING :
 printf("Job %d is pending.\n", job_id);
 break;
 case IPP_JOB_HELD :
 printf("Job %d is held.\n", job_id);
 break;
 case IPP_JOB_PROCESSING :
 printf("Job %d is processing.\n", job_id);
 break;
 case IPP_JOB_STOPPED :
 printf("Job %d is stopped.\n", job_id);
 break;
 case IPP_JOB_CANCELED :
 printf("Job %d is canceled.\n", job_id);
 break;
 case IPP_JOB_ABORTED :
 printf("Job %d is aborted.\n", job_id);
 break;
 case IPP_JOB_COMPLETED :
 printf("Job %d is completed.\n", job_id);
 break;
 }

 /* Sleep if the job is not finished */
 if (job_state < IPP_JOB_STOPPED)
 sleep(5);
}

 To cancel a job, use the cupsCancelJob function with the job ID:

#include <cups/cups.h>

cups_dest_t *dest;
int job_id;

cupsCancelJob(dest->name, job_id);

 Error Handling

 If any of the CUPS API printing functions returns an error, the reason for that error can be found by calling the cupsLastError and cupsLastErrorString functions. cupsLastError returns the last IPP error code (ipp_status_t) that was encountered, while cupsLastErrorString returns a (localized) human-readable string that can be shown to the user. For example, if any of the job creation functions returns a job ID of 0, you can use cupsLastErrorString to show the reason why the job could not be created:

#include <cups/cups.h>

int job_id;

if (job_id == 0)
 puts(cupsLastErrorString());

 Passwords and Authentication

 CUPS supports authentication of any request, including submission of print jobs. The default mechanism for getting the username and password is to use the login user and a password from the console.

 To support other types of applications, in particular Graphical User Interfaces ("GUIs"), the CUPS API provides functions to set the default username and to register a callback function that returns a password string.

 The cupsSetPasswordCB function is used to set a password callback in your program. Only one function can be used at any time.

 The cupsSetUser function sets the current username for authentication. This function can be called by your password callback function to change the current username as needed.

 The following example shows a simple password callback that gets a username and password from the user:

#include <cups/cups.h>

const char *
my_password_cb(const char *prompt)
{
 char	user[65];

 puts(prompt);

 /* Get a username from the user */
 printf("Username: ");
 if (fgets(user, sizeof(user), stdin) == NULL)
 return (NULL);

 /* Strip the newline from the string and set the user */
 user[strlen(user) - 1] = '\0';

 cupsSetUser(user);

 /* Use getpass() to ask for the password... */
 return (getpass("Password: "));
}

cupsSetPasswordCB(my_password_cb);

 Similarly, a GUI could display the prompt string in a window with input fields for the username and password. The username should default to the string returned by the cupsUser function.

 HTTP and IPP APIs

 The CUPS HTTP and IPP APIs provide low-level access to the HTTP and IPP protocols and CUPS scheduler. They are typically used by monitoring and administration programs to perform specific functions not supported by the high-level CUPS API functions.

 The HTTP APIs use an opaque structure called http_t to manage connections to a particular HTTP or IPP server. The httpConnectEncrypt function is used to create an instance of this structure for a particular server. The constant CUPS_HTTP_DEFAULT can be used with all of the cups functions to refer to the default CUPS server - the functions create a per-thread http_t as needed.

 The IPP APIs use two opaque structures for requests (messages sent to the CUPS scheduler) and responses (messages sent back to your application from the scheduler). The ipp_t type holds a complete request or response and is allocated using the ippNew or ippNewRequest functions and freed using the ippDelete function.

 The second opaque structure is called ipp_attribute_t and holds a single IPP attribute which consists of a group tag (ippGetGroupTag), a value type tag (ippGetValueTag), the attribute name (ippGetName), and 1 or more values (ippGetCount, ippGetBoolean, ippGetCollection, ippGetDate, ippGetInteger, ippGetRange, ippGetResolution, and ippGetString). Attributes are added to an ipp_t pointer using one of the ippAdd functions. For example, use ippAddString to add the "printer-uri" and "requesting-user-name" string attributes to a request:

ipp_t *request = ippNewRequest(IPP_GET_JOBS);

ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_URI, "printer-uri",
 NULL, "ipp://localhost/printers/");
ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "requesting-user-name",
 NULL, cupsUser());

 Once you have created an IPP request, use the cups functions to send the request to and read the response from the server. For example, the cupsDoRequest function can be used for simple query operations that do not involve files:

#include <cups/cups.h>

ipp_t *get_jobs(void)
{
 ipp_t *request = ippNewRequest(IPP_GET_JOBS);

 ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_URI, "printer-uri",
 NULL, "ipp://localhost/printers/");
 ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "requesting-user-name",
 NULL, cupsUser());

 return (cupsDoRequest(CUPS_HTTP_DEFAULT, request, "/"));
}

 The cupsDoRequest function frees the request and returns an IPP response or NULL pointer if the request could not be sent to the server. Once you have a response from the server, you can either use the ippFindAttribute and ippFindNextAttribute functions to find specific attributes, for example:

ipp_t *response;
ipp_attribute_t *attr;

attr = ippFindAttribute(response, "printer-state", IPP_TAG_ENUM);

 You can also walk the list of attributes with a simple for loop like this:

ipp_t *response;
ipp_attribute_t *attr;

for (attr = ippFirstAttribute(response); attr != NULL; attr = ippNextAttribute(response))
 if (ippGetName(attr) == NULL)
 puts("--SEPARATOR--");
 else
 puts(ippGetName(attr));

 The for loop approach is normally used when collecting attributes for multiple objects (jobs, printers, etc.) in a response. Attributes with NULL names indicate a separator between the attributes of each object. For example, the following code will list the jobs returned from our previous get_jobs example code:

ipp_t *response = get_jobs();

if (response != NULL)
{
 ipp_attribute_t *attr;
 const char *attrname;
 int job_id = 0;
 const char *job_name = NULL;
 const char *job_originating_user_name = NULL;

 puts("Job ID Owner Title");
 puts("------ ---------------- ---------------------------------");

 for (attr = ippFirstAttribute(response); attr != NULL; attr = ippNextAttribute(response))
 {
 /* Attributes without names are separators between jobs */
 attrname = ippGetName(attr);
 if (attrname == NULL)
 {
 if (job_id > 0)
 {
 if (job_name == NULL)
 job_name = "(withheld)";

 if (job_originating_user_name == NULL)
 job_originating_user_name = "(withheld)";

 printf("%5d %-16s %s\n", job_id, job_originating_user_name, job_name);
 }

 job_id = 0;
 job_name = NULL;
 job_originating_user_name = NULL;
 continue;
 }
 else if (!strcmp(attrname, "job-id") && ippGetValueTag(attr) == IPP_TAG_INTEGER)
 job_id = ippGetInteger(attr, 0);
 else if (!strcmp(attrname, "job-name") && ippGetValueTag(attr) == IPP_TAG_NAME)
 job_name = ippGetString(attr, 0, NULL);
 else if (!strcmp(attrname, "job-originating-user-name") &&
 ippGetValueTag(attr) == IPP_TAG_NAME)
 job_originating_user_name = ippGetString(attr, 0, NULL);
 }

 if (job_id > 0)
 {
 if (job_name == NULL)
 job_name = "(withheld)";

 if (job_originating_user_name == NULL)
 job_originating_user_name = "(withheld)";

 printf("%5d %-16s %s\n", job_id, job_originating_user_name, job_name);
 }
}

 Creating URI Strings

 To ensure proper encoding, the httpAssembleURIf function must be used to format a "printer-uri" string for all printer-based requests:

const char *name = "Foo";
char uri[1024];
ipp_t *request;

httpAssembleURIf(HTTP_URI_CODING_ALL, uri, sizeof(uri), "ipp", NULL, cupsServer(),
 ippPort(), "/printers/%s", name);
ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_URI, "printer-uri", NULL, uri);

 Sending Requests with Files

 The cupsDoFileRequest and cupsDoIORequest functions are used for requests involving files. The cupsDoFileRequest function attaches the named file to a request and is typically used when sending a print file or changing a printer's PPD file:

const char *filename = "/usr/share/cups/data/testprint.ps";
const char *name = "Foo";
char uri[1024];
char resource[1024];
ipp_t *request = ippNewRequest(IPP_PRINT_JOB);
ipp_t *response;

/* Use httpAssembleURIf for the printer-uri string */
httpAssembleURIf(HTTP_URI_CODING_ALL, uri, sizeof(uri), "ipp", NULL, cupsServer(),
 ippPort(), "/printers/%s", name);
ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_URI, "printer-uri", NULL, uri);
ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "requesting-user-name",
 NULL, cupsUser());
ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "job-name",
 NULL, "testprint.ps");

/* Use snprintf for the resource path */
snprintf(resource, sizeof(resource), "/printers/%s", name);

response = cupsDoFileRequest(CUPS_HTTP_DEFAULT, request, resource, filename);

 The cupsDoIORequest function optionally attaches a file to the request and optionally saves a file in the response from the server. It is used when using a pipe for the request attachment or when using a request that returns a file, currently only CUPS_GET_DOCUMENT and CUPS_GET_PPD. For example, the following code will download the PPD file for the sample HP LaserJet printer driver:

char tempfile[1024];
int tempfd;
ipp_t *request = ippNewRequest(CUPS_GET_PPD);
ipp_t *response;

ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "ppd-name",
 NULL, "laserjet.ppd");

tempfd = cupsTempFd(tempfile, sizeof(tempfile));

response = cupsDoIORequest(CUPS_HTTP_DEFAULT, request, "/", -1, tempfd);

 The example passes -1 for the input file descriptor to specify that no file is to be attached to the request. The PPD file attached to the response is written to the temporary file descriptor we created using the cupsTempFd function.

 Asynchronous Request Processing

 The cupsSendRequest and cupsGetResponse support asynchronous communications with the server. Unlike the other request functions, the IPP request is not automatically freed, so remember to free your request with the ippDelete function.

 File data is attached to the request using the cupsWriteRequestData function, while file data returned from the server is read using the cupsReadResponseData function. We can rewrite the previous CUPS_GET_PPD example to use the asynchronous functions quite easily:

char tempfile[1024];
int tempfd;
ipp_t *request = ippNewRequest(CUPS_GET_PPD);
ipp_t *response;

ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "ppd-name",
 NULL, "laserjet.ppd");

tempfd = cupsTempFd(tempfile, sizeof(tempfile));

if (cupsSendRequest(CUPS_HTTP_DEFAULT, request, "/") == HTTP_CONTINUE)
{
 response = cupsGetResponse(CUPS_HTTP_DEFAULT, "/");

 if (response != NULL)
 {
 ssize_t bytes;
 char buffer[8192];

 while ((bytes = cupsReadResponseData(CUPS_HTTP_DEFAULT, buffer, sizeof(buffer))) > 0)
 write(tempfd, buffer, bytes);
 }
}

/* Free the request! */
ippDelete(request);

 The cupsSendRequest function returns the initial HTTP request status, typically either HTTP_CONTINUE or HTTP_UNAUTHORIZED. The latter status is returned when the request requires authentication of some sort. The cupsDoAuthentication function must be called when your see HTTP_UNAUTHORIZED and the request re-sent. We can add authentication support to our example code by using a do ... while loop:

char tempfile[1024];
int tempfd;
ipp_t *request = ippNewRequest(CUPS_GET_PPD);
ipp_t *response;
http_status_t status;

ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "ppd-name",
 NULL, "laserjet.ppd");

tempfd = cupsTempFd(tempfile, sizeof(tempfile));

/* Loop for authentication */
do
{
 status = cupsSendRequest(CUPS_HTTP_DEFAULT, request, "/");

 if (status == HTTP_UNAUTHORIZED)
 {
 /* Try to authenticate, break out of the loop if that fails */
 if (cupsDoAuthentication(CUPS_HTTP_DEFAULT, "POST", "/"))
 break;
 }
}
while (status != HTTP_CONTINUE && status != HTTP_UNAUTHORIZED);

if (status == HTTP_CONTINUE)
{
 response = cupsGetResponse(CUPS_HTTP_DEFAULT, "/");

 if (response != NULL)
 {
 ssize_t bytes;
 char buffer[8192];

 while ((bytes = cupsReadResponseData(CUPS_HTTP_DEFAULT, buffer, sizeof(buffer))) > 0)
 write(tempfd, buffer, bytes);
 }
}

/* Free the request! */
ippDelete(request);

 Raster API

 The CUPS raster API provides a standard interface for reading and writing CUPS raster streams which are used for printing to raster printers. Because the raster format is updated from time to time, it is important to use this API to avoid incompatibilities with newer versions of CUPS.

 Two kinds of CUPS filters use the CUPS raster API - raster image processor (RIP) filters such as pstoraster and cgpdftoraster (macOS) that produce CUPS raster files and printer driver filters that convert CUPS raster files into a format usable by the printer. Printer driver filters are by far the most common.

 CUPS raster files (application/vnd.cups-raster) consists of a stream of raster page descriptions produced by one of the RIP filters such as pstoraster, imagetoraster, or cgpdftoraster. CUPS raster files are referred to using the cups_raster_t type and are opened using the cupsRasterOpen function. For example, to read raster data from the standard input, open file descriptor 0:

#include <cups/raster.h>>

cups_raster_t *ras = cupsRasterOpen(0, CUPS_RASTER_READ);

 Each page of data begins with a page dictionary structure called cups_page_header2_t. This structure contains the colorspace, bits per color, media size, media type, hardware resolution, and so forth used for the page.

 You read the page header using the cupsRasterReadHeader2 function:

#include <cups/raster.h>>

cups_raster_t *ras = cupsRasterOpen(0, CUPS_RASTER_READ);
cups_page_header2_t header;

while (cupsRasterReadHeader2(ras, &header))
{
 /* setup this page */

 /* read raster data */

 /* finish this page */
}

 After the page dictionary comes the page data which is a full-resolution, possibly compressed bitmap representing the page in the printer's output colorspace. You read uncompressed raster data using the cupsRasterReadPixels function. A for loop is normally used to read the page one line at a time:

#include <cups/raster.h>>

cups_raster_t *ras = cupsRasterOpen(0, CUPS_RASTER_READ);
cups_page_header2_t header;
int page = 0;
int y;
char *buffer;

while (cupsRasterReadHeader2(ras, &header))
{
 /* setup this page */
 page ++;
 fprintf(stderr, "PAGE: %d %d\n", page, header.NumCopies);

 /* allocate memory for 1 line */
 buffer = malloc(header.cupsBytesPerLine);

 /* read raster data */
 for (y = 0; y < header.cupsHeight; y ++)
 {
 if (cupsRasterReadPixels(ras, buffer, header.cupsBytesPerLine) == 0)
 break;

 /* write raster data to printer on stdout */
 }

 /* finish this page */
}

 When you are done reading the raster data, call the cupsRasterClose function to free the memory used to read the raster file:

cups_raster_t *ras;

cupsRasterClose(ras);

 Functions

cupsAddDest

 Add a destination to the list of destinations.

int cupsAddDest (

 const char *name,

 const char *instance,

 int num_dests,

 cups_dest_t **dests

);

Parameters

	name

 	Destination name

	instance

 	Instance name or NULL for none/primary

	num_dests

 	Number of destinations

	dests

 	Destinations

Return Value

 New number of destinations

cupsAddOption

 Add an option to an option array.

int cupsAddOption (

 const char *name,

 const char *value,

 int num_options,

 cups_option_t **options

);

Parameters

	name

 	Name of option

	value

 	Value of option

	num_options

 	Number of options

	options

 	Pointer to options

Return Value

 Number of options

cupsCancelDestJob

 Include necessary headers...

ipp_status_t cupsCancelDestJob (

 http_t *http,

 cups_dest_t *dest,

 int job_id

);

Parameters

	http

 	Connection to destination

	dest

 	Destination

	job_id

 	Job ID

Return Value

 Cancel a job on a destination.

 The "job_id" is the number returned by cupsCreateDestJob.

Returns IPP_STATUS_OK on success and
IPP_STATUS_ERRPR_NOT_AUTHORIZED or
IPP_STATUS_ERROR_FORBIDDEN on failure.

OEBPS/nav.xhtml

 		Overview

 		Compiling Programs

 		CUPS API
 		Clients and Servers

 		Printers and Classes

 		Options

 		Print Jobs

 		Error Handling

 		Passwords and Authentication

 		HTTP and IPP APIs
 		Creating URI Strings

 		Sending Requests with Files

 		Asynchronous Request Processing

 		Raster API

 		Functions
 		cupsAddDest

 		cupsAddOption

 		cupsCancelDestJob

 		cupsCancelJob

 		cupsCancelJob2

 		cupsCheckDestSupported

 		cupsCloseDestJob

 		cupsConnectDest

 		cupsConnectDestBlock

 		cupsCopyDest

 		cupsCopyDestConflicts

 		cupsCopyDestInfo

 		cupsCreateDestJob

 		cupsCreateJob

 		cupsDoAuthentication

 		cupsDoFileRequest

 		cupsDoIORequest

 		cupsDoRequest

 		cupsEncodeOptions

 		cupsEncodeOptions2

 		cupsEncryption

 		cupsEnumDests

 		cupsEnumDestsBlock

 		cupsFindDestDefault

 		cupsFindDestReady

 		cupsFindDestSupported

 		cupsFinishDestDocument

 		cupsFinishDocument

 		cupsFreeDestInfo

 		cupsFreeDests

 		cupsFreeJobs

 		cupsFreeOptions

 		cupsGetClasses

 		cupsGetDefault

 		cupsGetDefault2

 		cupsGetDest

 		cupsGetDestMediaByIndex

 		cupsGetDestMediaByName

 		cupsGetDestMediaBySize

 		cupsGetDestMediaCount

 		cupsGetDestMediaDefault

 		cupsGetDestWithURI

 		cupsGetDests

 		cupsGetDests2

 		cupsGetFd

 		cupsGetFile

 		cupsGetJobs

 		cupsGetJobs2

 		cupsGetNamedDest

 		cupsGetOption

 		cupsGetPassword

 		cupsGetPassword2

 		cupsGetPrinters

 		cupsGetResponse

 		cupsHashData

 		cupsLastError

 		cupsLastErrorString

 		cupsLocalizeDestMedia

 		cupsLocalizeDestOption

 		cupsLocalizeDestValue

 		cupsNotifySubject

 		cupsNotifyText

 		cupsParseOptions

 		cupsPrintFile

 		cupsPrintFile2

 		cupsPrintFiles

 		cupsPrintFiles2

 		cupsPutFd

 		cupsPutFile

 		cupsRasterClose

 		cupsRasterErrorString

 		cupsRasterInitPWGHeader

 		cupsRasterOpen

 		cupsRasterOpenIO

 		cupsRasterReadHeader

 		cupsRasterReadHeader2

 		cupsRasterReadPixels

 		cupsRasterWriteHeader

 		cupsRasterWriteHeader2

 		cupsRasterWritePixels

 		cupsReadResponseData

 		cupsRemoveDest

 		cupsRemoveOption

 		cupsSendRequest

 		cupsServer

 		cupsSetClientCertCB

 		cupsSetCredentials

 		cupsSetDefaultDest

 		cupsSetDests

 		cupsSetDests2

 		cupsSetEncryption

 		cupsSetPasswordCB

 		cupsSetPasswordCB2

 		cupsSetServer

 		cupsSetServerCertCB

 		cupsSetUser

 		cupsSetUserAgent

 		cupsStartDestDocument

 		cupsStartDocument

 		cupsUser

 		cupsUserAgent

 		cupsWriteRequestData

 		get_error_buffer

 		httpAcceptConnection

 		httpAddCredential

 		httpAddrAny

 		httpAddrClose

 		httpAddrConnect

 		httpAddrConnect2

 		httpAddrCopyList

 		httpAddrEqual

 		httpAddrFamily

 		httpAddrFreeList

 		httpAddrGetList

 		httpAddrLength

 		httpAddrListen

 		httpAddrLocalhost

 		httpAddrLookup

 		httpAddrPort

 		httpAddrString

 		httpAssembleURI

 		httpAssembleURIf

 		httpAssembleUUID

 		httpBlocking

 		httpCheck

 		httpClearCookie

 		httpClearFields

 		httpClose

 		httpCompareCredentials

 		httpConnect

 		httpConnect2

 		httpConnectEncrypt

 		httpCopyCredentials

 		httpCredentialsAreValidForName

 		httpCredentialsGetExpiration

 		httpCredentialsGetTrust

 		httpCredentialsString

 		httpDecode64

 		httpDecode64_2

 		httpDelete

 		httpEncode64

 		httpEncode64_2

 		httpEncryption

 		httpError

 		httpFieldValue

 		httpFlush

 		httpFlushWrite

 		httpFreeCredentials

 		httpGet

 		httpGetActivity

 		httpGetAddress

 		httpGetAuthString

 		httpGetBlocking

 		httpGetContentEncoding

 		httpGetCookie

 		httpGetDateString

 		httpGetDateString2

 		httpGetDateTime

 		httpGetEncryption

 		httpGetExpect

 		httpGetFd

 		httpGetField

 		httpGetHostByName

