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Abstract

This paper has been published in the Journal of Statistical Software (Meyer, Zeileis,
and Hornik 2006) and describes the “strucplot” framework for the visualization of multi-
way contingency tables. Strucplot displays include hierarchical conditional plots such as
mosaic, association, and sieve plots, and can be combined into more complex, specialized
plots for visualizing conditional independence, GLMs, and the results of independence
tests. The framework’s modular design allows flexible customization of the plots’ graphical
appearance, including shading, labeling, spacing, and legend, by means of “graphical
appearance control” functions. The framework is provided by the R package vcd.

Keywords: contingency tables, mosaic plots, association plots, sieve plots, categorical data,
independence, conditional independence, HSV, HCL, residual-based shading, grid, R.

1. Introduction

In order to explain multi-dimensional categorical data, statisticians typically look for (con-
ditional) independence structures. Whether the task is purely exploratory or model-based,
techniques such as mosaic and association plots offer good support for visualization. Both
visualize aspects of (possibly higher-dimensional) contingency tables, with several extensions
introduced over the last two decades, and implementations available in many statistical en-
vironments. A mosaic plot (Hartigan and Kleiner 1984) is basically an area-proportional
visualization of (typically, observed) frequencies, composed of tiles (corresponding to the
cells) created by recursive vertical and horizontal splits of a rectangle. Thus, the area of each
tile is proportional to the corresponding cell entry given the dimensions of previous splits. An
association plot (Cohen 1980) visualizes the standardized deviations of observed frequencies
from those expected under a certain independence hypothesis. Each cell is represented by
a rectangle that has (signed) height proportional to the residual and width proportional to
the square root of the expected counts, so that the area of the box is proportional to the
difference in observed and expected frequencies.

Extensions to these techniques have mainly focused on the following aspects.

1. Varying the shape of bar plots and mosaic displays to yield, e.g., double-decker plots
(Hofmann 2001), spine plots, or spinograms (Hofmann and Theus 2005).

2. Using residual-based shadings to visualize log-linear models (Friendly 1994, 2000) and
significance of statistical tests (Meyer, Zeileis, and Hornik 2003; Zeileis, Meyer, and
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Hornik 2007).

3. Using pairs plots and trellis-like layouts for marginal, conditional and partial views
(Friendly 1999).

4. Adding direct user interaction, allowing quick exploration and modification of the visu-
alized models (Unwin, Hawkins, Hofmann, and Siegl 1996; Theus 2003).

5. Providing a modular and flexible implementation to easily allow user extensions (Meyer
et al. 2003, 2006).

Current implementations of mosaic displays can be found, e.g., for SAS (SAS Institute Inc.
2005), ViSta (Young 1996), MANET (Unwin et al. 1996), Mondrian (Theus 2003), R (R
Development Core Team 2006), and S-PLUS (Insightful Inc. 2005). For R, currently three
implementations do exist in the packages graphics (in base R), vcd (Meyer et al. 2006), and
iplots (Urbanek and Wichtrey 2006), respectively. Table 1 gives an overview of the available
functionality in these systems. Most environments are available on Windows, MacOS, and
Linux/Unix variants, except MANET which is only available for the Macinthosh platforms.

SAS S-PLUS R ViSta MANET Mondrian
base vcd iplots

Basic functionality × × × × × × × ×
Shape × × ×
Res.-based shadings × × × (×) (×) (×)
Highlighting × × × × ×
Conditional views × × × ×
Interaction × × × ×
Linking × × × ×
Extensible design ×
Language SAS S R R R/Java XLisp C++ Java

Table 1: Comparison of current software environments.

Figures 1 to 4 illustrate some of these extensions. Figure 1 shows the results from a double-
blind clinical trial investigating a new treatment for rheumatoid arthritis, using an extended
mosaic plot with residual-based shading based on the maximum statistic: clearly, the new
treatment is effective. The dark blue cell indicates that the rate of treated patients showing
marked improvement is significant at the 1% level. Figure 2 visualizes the well-known UCB
admissions data by means of a conditional association plot. The panels show the residuals
from a conditional independence model (independence of gender and admission, given depart-
ment), stratified by department. Clearly, the situation in department A (more women/less
men accepted than would be expected under the null hypothesis) causes the rejection of the
hypothesis of conditional independence. Figure 3 illustrates the conditional independence of
premarital and extramarital sex, given gender and marital status. The χ2 test of indepen-
dence, based on the permutation distribution, rejects the null hypothesis: possibly, because
the tendency of people to have extramarital sex when they had premarital sex is particularly
marked among married people? The rate of such women and men ist significant at the 0.01
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and 0.1 level, respectively. Finally, Figure 4 visualizes the“Survival on the Titanic”data using
a double-decker plot. Here, a binary response (survival of the disaster) is to be explained by
other factors (class, gender, and age). The gray boxes represent the proportion of survived
passengers in a particular stratum. The proportions of saved women and children are indeed
higher than those of men, but they clearly decrease from the 1st to the 3rd class. In addition,
the proportion of saved men in the 1st class is higher than in the others.

This paper describes the strucplot framework provided by the vcd package for the R envi-
ronment for statistical computing and graphics, available from the Comprehensive R Archive
Network (http://CRAN.R-project.org/). The framework integrates displays such as mo-
saic, association, and sieve plots by their unifying property of being flat representations of
contingency tables. These basic plots, as well as specialized displays for conditional indepen-
dence, can be used both for exploratory visualization and model-based analysis. Exploratory
techniques include specialized displays for the bivariate case, as well as pairs and trellis-type
displays for higher-dimensional tables. Model-based tools include methods suitable for the vi-
sualization of conditional independence tests (including permutation tests), as well as for the
visualization of particular GLMs (logistic regression, log-linear models). Additionally, two
of the framework’s further strengths are its flexibility and extensibility: graphical appear-
ance aspects such as shading, labeling, and spacing are modularized by means of “graphical
appearance control” (grapcon) functions, allowing fine-granular customization and user-level
extensions.

The remainder of the paper is organized as follows. In Section 2, we give an overview of the
strucplot framework, describing the hierarchy of the main components and the basic function-
ality. In Section 3, we demonstrate how (residual-based) shadings support the visualization
of log-linear models and the results of independence tests. Also, we explain step-by-step how
the concepts of generating and grapcon functions can be combined to provide a flexible cus-
tomization of complex graphical displays as created by the strucplot framework. Sections 4
and 5 discuss in detail the labeling and spacing features, respectively. Section 6 exemplifies
the framework in the analysis of a four-way data set. Section 7 concludes the work.

2. The strucplot framework

The strucplot framework in the R package vcd, used for visualizing multi-way contingency
tables, integrates techniques such as mosaic displays, association plots, and sieve plots. The
main idea is to visualize the tables’ cells arranged in rectangular form. For multi-way tables,
the variables are nested into rows and columns using recursive conditional splits, given the
margins. The result is a “flat” representation that can be visualized in ways similar to a
two-dimensional table. This principle defines a class of conditional displays which allows for
granular control of graphical appearance aspects, including:

� the content of the tiles

� the split direction for each dimension

� the graphical parameters of the tiles’ content

� the spacing between the tiles

http://CRAN.R-project.org/
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Figure 1: Mosaic plot for the Arthritis data.
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Figure 2: Conditional association plot for the UCBAdmissions data.
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Figure 3: Mosaic plot for the PreSex data.
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Figure 4: Double-decker plot for the Titanic data.
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� the labeling of the tiles

The strucplot framework is highly modularized: Figure 5 shows the hierarchical relation-
ship between the various components. On the lowest level, there are several groups of
workhorse and parameter functions that directly or indirectly influence the final appear-
ance of the plot (see Table 2 for an overview). These are examples of grapcon functions.
They are created by generating functions (grapcon generators), allowing flexible parameteri-
zation and extensibility (Figure 5 only shows the generators). The generator names follow the
naming convention group_foo (), where group reflects the group the generators belong to
(strucplot core, labeling, legend, shading, or spacing). The workhorse functions (created by
struc_foo (), labeling_foo (), and legend_foo ()) directly produce graphical output (i.e.,
“add ink to the canvas”), whereas the parameter functions (created by spacing_foo () and
shading_foo ()) compute graphical parameters used by the others. The grapcon functions
returned by struc_foo () implement the core functionality, creating the tiles and their con-
tent. On the second level of the framework, a suitable combination of the low-level grapcon
functions (or, alternatively, corresponding generating functions) is passed as “hyperparame-
ters” to strucplot(). This central function sets up the graphical layout using grid viewports
(see Figure 6), and coordinates the specified core, labeling, shading, and spacing functions
to produce the plot. On the third level, we provide several convenience functions such as
mosaic(), sieve(), assoc(), and doubledecker() which interface strucplot() through
sensible parameter defaults and support for model formulae. Finally, on the fourth level,
there are “related” vcd functions (such as cotabplot() and the pairs() methods for table
objects) arranging collections of plots of the strucplot framework into more complex displays
(e.g., by means of panel functions).

2.1. Mosaic, association, and sieve plots

As an example, consider the HairEyeColor data containing two polytomous variables (hair
and eye color), as well as one (artificial) dichotomous gender variable (Sex). The “flat-
tened” contingency table can be obtained using the structable() function (quite similar
to ftable() in base R, but allowing the specification of split directions):

> (HEC <- structable(Eye ~ Sex + Hair, data = HairEyeColor))

Eye Brown Blue Hazel Green

Sex Hair

Male Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

Female Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

Let us first visualize the contingency table by means of a mosaic plot. The effect of
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Group Grapcon generator Description

strucplot struc_assoc() core function for association plots
core struc_mosaic() core function for mosaic plots

struc_sieve() core function for sieve plots

labeling labeling_border() border labels
labeling_cboxed() centered labels with boxes, all labels clipped,

and on top and left border
labeling_cells() cell labels
labeling_conditional() border labels for conditioning variables

and cell labels for conditioned variables
labeling_doubledecker() draws labels for doubledecker plot
labeling_lboxed() left-aligned labels with boxes
labeling_left() left-aligned border labels
labeling_left2() left-aligned border labels, all labels on top and left border
labeling_list() draws a list of labels under the plot

shading shading_binary() visualizes the sign of the residuals
shading_Friendly() implements Friendly shading (based on HSV colors)
shading_hcl() shading based on HCL colors
shading_hsv() shading based on HSV colors
shading_max() shading visualizing the maximum test statistic

(based on HCL colors)
shading_sieve() implements Friendly shading customized for sieve plots

(based on HCL colors)

spacing spacing_conditional() increasing spacing for conditioning variables,
equal spacing for conditioned variables

spacing_dimequal() equal spacing for each dimension
spacing_equal() equal spacing for all dimensions
spacing_highlighting() increasing spacing, last dimension set to zero
spacing_increase() increasing spacing

legend legend_fixed() creates a fixed number of bins (similar to mosaicplot())
legend_resbased() suitable for an arbitrary number of bins

(also for continuous shadings)

Table 2: Available grapcon generators in the strucplot framework
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Figure 5: Components of the strucplot framework.

> mosaic(HEC)

equivalent to

> mosaic(~ Sex + Eye + Hair, data = HairEyeColor)

depicts the observed frequencies of the HairEyeColor data. If there are zero entries, tiles have
zero area and are, additionally, marked by small bullets (see, e.g, Figure 4). By default, these
cells are not split further. The bullets help distinguishing very small cells from zero entries,
and are particularly useful when color shadings come into play (see the example using the
Bundesliga data in Section 3.3). Note that in contrast to, e.g., mosaicplot() in base R, the
default split direction and level ordering in all strucplot displays correspond to the textual
representation produced by the print methods. It is also possible to visualize the expected
values instead of the observed values (see Figure 8):

> mosaic(HEC, type = "expected")

In order to compare observed and expected values, a sieve plot (Riedwyl and Schüpbach 1994)
could be used (see Figure 9):

> sieve(~ Sex + Eye + Hair, data = HEC, spacing = spacing_dimequal(c(2,0,0)))
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Figure 6: Viewport layout for strucplot displays with their names. [A] = “corner top left”,
[B] = “corner top right”, [C] = “corner bottom left”, [D] = “corner bottom right”, [E] = “leg-
end top”, [F] = “legend sub”.

where spacing_dimequal is used to set the spacing of the second and third dimension to zero.
Alternatively, we can directly inspect the residuals. The Pearson residuals (standardized
deviations of observed from expected values) are conveniently visualized using association
plots (Cohen 1980). In contrast to assocplot() in base R, vcd’s assoc() function scales to
more than two variables (see Figure 10):

> assoc(HEC, compress = FALSE)

where the compress argument keeps distances between tiles equal.

For both mosaic plots and association plots, the splitting of the tiles can be controlled using
the split_vertical argument. The default is to alternate splits starting with a horizontal
one (see Figure 11):

> mosaic(HEC, split_vertical = c(TRUE, FALSE, TRUE),

+ labeling_args = list(abbreviate_labs = c(Eye = 3)))

(Note that HEC, a structable object, already includes a splitting information which simply gets
overloaded in this example.) For compatibility with mosaicplot() in base R, the mosaic()

function also allows the use of a direction argument taking a vector of "h" and "v" charac-
ters:
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Figure 7: Mosaic plot for the HairEyeColor data.
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Figure 8: Mosaic plot for the HairEyeColor data (expected values).
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Figure 9: Sieve plot for the HairEyeColor data visualizing simultaneously observed and
expected values.

> mosaic(HEC, direction = c("v","h","v"))

By a suitable combination of splitting, spacing, and labeling settings, the functions provided
by the strucplot framework can be customized in a quite flexible way. For example, the default
method for doubledecker() is simply a wrapper for strucplot(), setting the right defaults.
Most default settings such as colors, spacing, and labeling are specified via the parameters
and passed through to strucplot(). The additional code just handles the dependent variable
information, and in particular permutes the table to have the dependent variable as the last
dimension as required for the doubledecker plot. Figure 4 shows a doubledecker plot of the
Titanic data, explaining the probability of survival (“survived”) by age, given sex, given
class. It is created by:

> doubledecker(Titanic)

equivalent to:

> doubledecker(Survived ~ Class + Sex + Age, data = Titanic)

2.2. Conditional and partial views

So far, we have visualized either full or collapsed tables, as suggested by the analysis task at
hand. Subtables can be selected in a similar way as for objects of class table using indexing.
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Figure 10: Association plot for the HairEyeColor data.
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Note, however, that subsetting of structable objects is more restrictive because of their inherent
conditional structure. Since the variables on both the row and the columns side are nested,
subsetting is only possible “outside-in”, that is, indexing operates on blocks defined by the
variable levels. In the following, we use the Titanic data again, this time collapsed over
Survived to investigate the structure of crew and passengers (and having the Child and Age

labels of the Age variable swapped for optical clarity):

> (STD <- structable(~ Sex + Class + Age, data = Titanic[,,2:1,]))

Class 1st 2nd 3rd Crew

Sex Age

Male Adult 175 168 462 862

Child 5 11 48 0

Female Adult 144 93 165 23

Child 1 13 31 0

> STD["Male",]

Class 1st 2nd 3rd Crew

Sex Age

Male Adult 175 168 462 862

Child 5 11 48 0

> STD["Male", c("1st","2nd","3rd")]

Class 1st 2nd 3rd

Sex Age

Male Adult 175 168 462

Child 5 11 48

Conditioning on levels (i.e., choosing a table subset for fixed levels of the conditioning vari-
able(s)) is done using the [[ operator. Here again, the sequence of conditioning levels is
restricted by the hierarchical structure of the structable object. In the following examples,
note that compared to subsetting, the first dimension(s) are dropped:

> STD[["Male",]]

Class 1st 2nd 3rd Crew

Age

Adult 175 168 462 862

Child 5 11 48 0

> STD[[c("Male", "Adult"),]]

Class 1st 2nd 3rd Crew

175 168 462 862
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> STD[["Male","1st"]]

Age

Adult 175

Child 5

Now, there are several ways for visualizing conditional independence structures. The “brute
force” method is to draw separate plots for the strata. The following example compares the
association between hair and eye color, given gender, by using subsetting on the flat table
and grid’s viewport framework to visualize the two groups besides each other:

> pushViewport(viewport(layout = grid.layout(ncol = 2)))

> pushViewport(viewport(layout.pos.col = 1))

> mosaic(STD[["Male"]], margins = c(left = 2.5, top = 2.5, 0), sub = "Male", newpage = FALSE)

> popViewport()

> pushViewport(viewport(layout.pos.col = 2))

> mosaic(STD[["Female"]], margins = c(top = 2.5, 0), sub = "Female", newpage = FALSE)

> popViewport(2)

Note the use of the margins argument: it takes a vector with up to four values whose unnamed
components are recycled, but “overruled” by the named arguments. Thus, in the second
example, only the top margin is set to 2.5 lines, and all other to 0. This idea applies to almost
all vectorized arguments in the strucplot framework (with split_vertical as a prominent
exception).

The cotabplot() function does a much better job on this task: it arranges stratified strucplot
displays in a lattice-like layout, conditioning on variable levels. The plot in Figure 13 shows
class and age group, given sex:

> cotabplot(~ Class + Age | Sex, data = STD, split_vertical = TRUE)

Visualizing the strata separately “hides” the distribution of the conditioning variable(s) which
may or may not be appropriate or sensible in a particular analysis step. If we wish to keep the
information on the marginal distribution(s), we can use one single mosaic for the stratified
plot since mosaic displays are“conditional plots”by definition. We just need to make sure that
conditioning variables are used first for splitting. Both the default and the formula interface
of mosaic() allow the specification of conditioning variables (see Figure 14):

> mosaic(STD, condvars = "Sex", split_vertical = c(TRUE, TRUE, FALSE))

> mosaic(~ Class + Age | Sex, data = STD, split_vertical = c(TRUE, TRUE, FALSE))

The effect of using this is that conditioning variables are permuted ahead of the the condi-
tioned variables in the table, and that spacing_conditional() is used as default to better
distinguish conditioning from conditioned dimensions. This spacing uses equal space between
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Figure 12: Two mosaic displays put side-by-side, visualizing the distribution of class and age,
given gender. The marginal distribution of gender cannot be seen.
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Figure 13: Conditional table plot for the Titanic data, again visualizing the distribution of
age and class, given gender, using separate mosaic displays like the“manual”plot in Figure 12.
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Figure 14: Mosaic plot again visualizing the distribution of class and age, given gender, this
time using a single mosaic plot. In contrast to Figures 12 and 13, this plot also visualizes the
marginal distribution of gender.

tiles of conditioned variables, and increasing space between tiles of conditioning variables (See
Section 5).

Another set of high-level functions for visualizing conditional independence models are the
pairs() methods for table and structable objects. In contrast to cotabplot() which condi-
tions on variables, the pairs() methods create pairwise views of the table. They produce, by
default, a plot matrix having strucplot displays in the off-diagonal panels, and the variable
names (optionally, with univariate displays) in the diagonal cells. Figure 15 shows a pairs
display for the Titanic data with univariate mosaics in the diagonal, and mosaic plots vi-
sualizing the corresponding bivariate mosaics in the upper and lower triangles. Due to the
inherent asymmetry of mosaic displays, the corresponding plots in the upper and lower trian-
gle differ depending on which variable is used first for splitting—inspecting both views might
help detecting patterns in a data set. Additionally, we are using a special spacing and shading
normally used to ‘highlight’ the second variable in the first (as will be discussed in Section 5):
here, the intention of the spacing is to emphasize the conditional distributions of the second
variable, given the first one, and the shading helps identifying the factor levels in the second
variable.

> pairs(STD, highlighting = 2, diag_panel = pairs_diagonal_mosaic,

+ diag_panel_args = list(fill = grey.colors))

The labels of the variables are to be read from left to right and from top to bottom. In
addition, the levels can be matched by position within the columns and by shading within
the rows. In plots produced by pairs(), each panel’s row and column define two variables
X and Y used for the specification of four different types of independence: pairwise, total,
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Figure 15: Pairs plot for the Titanic data.

conditional, and joint. The pairwise mosaic matrix shows bivariate marginal relations between
X and Y , collapsed over all other variables. The total independence mosaic matrix shows
mosaic plots for mutual independence, i.e., for marginal and conditional independence among
all pairs of variables. The conditional independence mosaic matrix shows mosaic plots for
marginal independence of X and Y , given all other variables. The joint independence mosaic
matrix shows mosaic plots for joint independence of all pairs (X, Y ) of variables from the
others.

Upper and lower parts can independently be used to display different types of independence
models, or different strucplot displays (mosaic, association, or sieve plots). The available
panel functions (pairs_assoc(), pairs_mosaic(), and pairs_sieve()) are simple wrappers
to assoc(), mosaic(), and sieve(), respectively. Obviously, seeing patterns in strucplot
matrices becomes increasingly difficult with higher dimensionality. Therefore, this plot is
typically used with a suitable residual-based shading (see Section 3).

2.3. Interactive plot modifications

All strucplot core functions are supposed to produce conditional hierarchical plots by the
means of nested viewports, corresponding to the provided splitting information. Thus, at the
end of the plotting, each tile is associated with a particular viewport. Each of those viewports
has to be conventionally named, enabling other strucplot modules, in particular the labeling
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functions, to access specific tiles after they have been plotted. The naming convention for the
viewports is:

[Optional prefix] cell:Variable1 =Level1,Variable2 =Level2 . . .

Clearly, these names depend on the splitting. The following example shows how to access
parts of the plot after it has been drawn (see Figure 16):

> mosaic(~ Hair + Eye, data = HEC, pop = FALSE)

> seekViewport("cell:Hair=Blond")

> grid.rect(gp = gpar(col = "red", lwd = 4))

> seekViewport("cell:Hair=Blond,Eye=Blue")

> grid.circle(r = 0.2, gp = gpar(fill = "cyan"))

Note that the viewport tree is removed by default. Therefore, the pop argument has to be
set to FALSE when viewports shall be accessed.
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Figure 16: Adding elements to a mosaic plot after drawing.

In addition to the viewports, the main graphical elements get names following a similar
construction method. This allows to change graphical parameters of plot elements after the
plotting (see Figure 17):

> assoc(Eye ~ Hair, data = HEC, pop = FALSE)

> getNames()[1:6]

[1] "GRID.lines.1363" "rect:Hair=Black,Eye=Brown"

[3] "GRID.lines.1364" "rect:Hair=Black,Eye=Blue"

[5] "GRID.lines.1365" "rect:Hair=Black,Eye=Hazel"
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> grid.edit("rect:Hair=Blond,Eye=Blue", gp = gpar(fill = "red"))
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Figure 17: Changing graphical parameters of elements after drawing.

2.4. Performance issues

As stated above, the implementation of strucplot displays is based on creating and nesting
grid viewports. The main time-consuming steps performed by the core functions are the
following:

1. recursively, split the table until the individual cells are reached

2. during the splits, add viewports to the plot

3. for the individual cells, add plot-specific content (rectangles for mosaics, bars for asso-
ciation plots, etc.)

All these operations scale linearly with the amount of created viewports. For a d-dimensional
table with ki levels, i = 1 . . . d, the total number of needed viewports Td can roughly be
estimated as

Td = k1 + k1k2 + · · · + k1 · · · kd =
d∑

i=1

∏
j≤i

kj (1)

since we first push the k1 viewports for the levels of the first dimension, then, for each of
these, the k2 levels of the second dimension, etc. If the number of levels is equal (k) for all
dimensions, Td simplifies to
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Td =
d∑

i=1

ki =
k(kd − 1)

k − 1
(2)

and so the time complexity for drawing a strucplot display is of order kd.

3. Shadings

Unlike other graphics functions in base R, the strucplot framework allows almost full control
over the graphical parameters of all plot elements. In particular, in association plots, mosaic
plots, and sieve plots, the user can modify the graphical appearance of each tile individually.
Built on top of this functionality, the framework supplies a set of shading functions choosing
colors appropriate for the visualization of log-linear models. The tiles’ graphical parameters
are set using the gp argument of the functions of the strucplot framework. This argument
basically expects an object of class gpar whose components are arrays of the same shape
(length and dimensionality) as the data table (see Section 3.1). For convenience, however,
the user can also supply a grapcon function that computes such an object given a vector of
residuals, or, alternatively, a generating function that takes certain arguments and returns
such a grapcon function (see Section 3.2). We provide several shading functions, including
support for both HSV and HCL colors, and the visualization of significance tests (see Section
3.3).

3.1. Specifying graphical parameters of strucplot displays

As an example, consider the UCBAdmissions data. In the table aggregated over departments,
we would like to highlight the (incidentally wrong) impression that there were too many male
students accepted compared to the presumably discriminated female students (see Figure 18):

> (ucb <- margin.table(UCBAdmissions, 1:2))

Gender

Admit Male Female

Admitted 1198 557

Rejected 1493 1278

> (fill_colors <- matrix(c("dark cyan","gray","gray","dark magenta"), ncol = 2))

[,1] [,2]

[1,] "dark cyan" "gray"

[2,] "gray" "dark magenta"

> mosaic(ucb, gp = gpar(fill = fill_colors, col = 0))

As the example shows, we create a fourfold table with appropriate colors (dark cyan for
admitted male students and dark magenta for rejected female students) and supply them to
the fill component of the gpar object passed to the gp argument of mosaic(). For visual
clarity, we additionally hide the tiles’ borders by setting the col component to 0 (transparent).
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Figure 18: Mosaic plot for the UCBAdmissions data with highlighted cells.

If the parameters specified in the gpar object are “incomplete”, they will be recycled along
the last splitting dimension. In the following example based on the Titanic data, we will
highlight all cells corresponding to survived passengers (see Figure 19):

> mosaic(Titanic, gp = gpar(fill = c("gray","dark magenta")),

+ spacing = spacing_highlighting,

+ labeling_args = list(abbreviate_labs = c(Age = 3), rep = c(Survived = FALSE))

+ )

Note that spacing_highlighting() sets the spaces between tiles in the last dimension to 0.
The labeling_args argument ensures that labels do not overlap (see Section 4).

3.2. Customizing residual-based shadings

This flexible way of specifying graphical parameters is the basis for a suite of shading func-
tions that modify the tiles’ appearance with respect to a vector of residuals, resulting from
deviations of observed from expected frequencies under a given log-linear model. The idea is
to visualize at least sign and absolute size of the residuals, but some shadings, additionally,
indicate overall significance. One particular shading, the maximum shading (Meyer et al.
2003; Zeileis et al. 2007), even allows to identify the cells that cause the rejection of the null
hypothesis.

Conceptually, the strucplot framework offers three alternatives to add residual-based shading
to plots:

1. Precomputing the graphical parameters (e.g., fill colors), encapsulating them into an
object of class gpar as demonstrated in the previous section, and passing this object to
the gp argument.
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Figure 19: Recycling of parameters, used for highlighting the survived passengers in the
Titanic data.

2. Providing a grapcon function to the gp argument that takes residuals as input and
returns an object as described in alternative 1.

3. Providing a grapcon generator taking parameters and returning a function as described
in alternative 2.

For each of these approaches, we will demonstrate the necessary steps to obtain a binary
shading that visualizes the sign of the residuals by a corresponding fill color (for simplicity,
we will treat 0 as positive).

Alternative 1: Precomputed gpar object

The first method is precomputing the graphical parameters“by hand”. We will use royalblue4
color for positive and mediumorchid4 color for negative residuals (see Figure 20):

> expected <- independence_table(ucb)

> (x <- (ucb - expected) / sqrt(expected))

Gender

Admit Male Female

Admitted 4.784093 -5.793466

Rejected -3.807325 4.610614

> (shading1_obj <- ifelse(x > 0, "royalblue4", "mediumorchid4"))
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Gender

Admit Male Female

Admitted "royalblue4" "mediumorchid4"

Rejected "mediumorchid4" "royalblue4"

> mosaic(ucb, gp = gpar(fill = shading1_obj))
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Figure 20: Binary shading visualizing the sign of the residuals.

Alternative 2: Grapcon function

For implementing alternative 2, we need to create a “shading function” that computes gpar
objects from residuals. For that, we can just reuse the code from the previous step:

> shading2_fun <- function(x) gpar(fill = ifelse(x > 0, "royalblue4", "mediumorchid4"))

To create a mosaic display with binary shading, it now suffices to specify the data table along
with shading2_fun():

> mosaic(ucb, gp = shading2_fun)

mosaic() internally calls strucplot() which computes the residuals from the specified inde-
pendence model (total independence by default), passes them to shading2_fun(), and uses
the gpar object returned to finally create the plot.

Our shading2_fun() function might be useful, but can still be improved: the hard-wired
colors should be customizable. We cannot simply extend the argument list to include, e.g., a
fill = c("royalblue4", "mediumorchid4") argument because strucplot() will neither
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know how to handle it, nor let us change the defaults. In fact, the interface of shading
functions is fixed, they are expected to take exactly one argument: a table of residuals. This
is where generating functions (alternative 3) come into play.

Alternative 3: Grapcon generator

We simply wrap our grapcon shading function in another function that takes all additional ar-
guments it needs to use, possibly preprocesses them, and returns the actual shading function.
This returned function will have access to the parameters since in R, nested functions are
lexically scoped. Thus, the grapcon generator returns (“creates”) a “parameterized” shading
function with the minimal standard interface strucplot() requires. The following example
shows the necessary extensions for our running example:

> shading3a_fun <- function(col = c("royalblue4", "mediumorchid4")) {

+ col <- rep(col, length.out = 2)

+ function(x) gpar(fill = ifelse(x > 0, col[1], col[2]))

+ }

The first statement just makes sure that exactly two colors are specified. In the call to
mosaic(), using the new shading3a_fun() function, we can now simply change the colors:

> mosaic(ucb, gp = shading3a_fun(c("royalblue4","mediumorchid4")))

(figure not shown). The procedure described so far is a rather general concept, applicable to
a wide family of user-level grid graphics. Indeed, the customization of other components of
the strucplot framework (labeling, spacing, legend, and core functions) follows the same idea.
Now for the shading functions, more customization is needed. Note that shading3a_fun()

needs to be evaluated by the user, even if the defaults are to be used. It is a better idea
to let strucplot() call the generating function, which, in particular, allows the passing of
arguments that are computed by strucplot(). Since shading functions can be used for visu-
alizing significance (see Section 3.3), it makes sense for generating functions to have access to
the model, i.e., observed and expected values, residuals, and degrees of freedom. For example,
the shading_max() generating function computes a permutation distribution of the maximum
statistic and p values for specified significance levels based on the observed table to create
data-driven cut-off points. If this was done in the shading function itself, the permutation
statistic would be recomputed every time the shading function is called, resulting in possibly
severe performance loss and numerical inconsistencies. Therefore, generating functions for
shadings are required to take at least the parameters observed, expected, residuals, and
df (these are provided by the strucplot framework), followed by other parameters controlling
the shading appearance (to be specified by the user):

> shading3b_fun <- function(observed = NULL, residuals = NULL, expected = NULL,

+ df = NULL, col = c("royalblue4", "mediumorchid4")) {

+ col <- rep(col, length.out = 2)

+ function(x) gpar(fill = ifelse(x > 0, col[1], col[2]))

+ }

> class(shading3b_fun) <- "grapcon_generator"
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Note that in this simple binary shading example, the first four parameters are not used.
In some sense, generating functions for shadings are parameterized both by the user and
the strucplot framework. For shading functions that require model information, the user-
specified parameters are to be passed to the gp_args argument instead, and for this to work,
the generating function needs a class attribute to be distinguishable from the“normal”shading
functions. For others (like our simple shading3b_fun()) this is optional, but recommended
for consistency:

> mosaic(ucb, gp = shading3b_fun, gp_args = list(col = c("red","blue")))

The final shading3b_fun() pretty much resembles shading_binary(), one of the standard
shading functions provided by the vcd package.

3.3. An overview of the shading functions in vcd

Friendly (1994) suggested a residual-based shading for the mosaic tiles that can also be applied
to the rectangles in association plots (Meyer et al. 2003). Apart from shading_binary(),
there are currently two basic shadings available in vcd: shading_hcl() and shading_hsv(),
as well as two derived functions: shading_Friendly() building upon shading_hsv(), and
shading_max() building upon shading_hcl(). shading_hsv() and shading_hcl() provide
the same conceptual tools, but use different color spaces: the Hue-Saturation-Value (HSV)
and the Hue-Chroma-Luminance (HCL) scheme, respectively. We will first expose the basic
concept of these shading functions using HSV space, and then briefly explain the differences
to HCL space (a detailed discussion can be found in Zeileis et al. 2007). Color palettes in
HCL space are preferable to palettes derived from HSV space from a perceptual point of view.
Functions for creating palettes (see, e.g., diverge_hcl()) are provided with the vcd package.

In HSV space, colors are specified in three dimensions: Hue, Saturation (“colorfulness”), and
Value (“lightness”, amount of gray). These three dimensions are used by shading_hsv() to
visualize information about the residuals and the underlying independence model. The hue
indicates the residuals’ sign: by default, blue for positive, and red for negative residuals.
The saturation of a residual is set according to its size: high saturation for large, and low
saturation for small residuals. Finally, the overall lightness is used to indicate the significance
of a test statistic: light colors for significant, and dark colors for non-significant results.

As an example, we will visualize the association of hair and eye color in the HairEyeColor

data set (see Figure 21, top):

> haireye <- margin.table(HairEyeColor, 1:2)

> mosaic(haireye, gp = shading_hsv)

As introduced before, the default shading scheme is not shading_hsv() but shading_hcl()
due to the better perceptual characteristics of HCL color space. The following example again
illustrates the HairEyeColor data, this time with HCL colors:

> mosaic(haireye, gp = shading_hcl)

> mosaic(haireye, gp = shading_hcl, gp_args = list(h = c(130, 43), c = 100, l = c(90, 70)))



David Meyer, Achim Zeileis, Kurt Hornik 27

−5.9

−4.0

−2.0

 0.0

 2.0

 4.0

 7.0

Pearson
residuals:

p−value =
< 2.22e−16

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

−5.9

−4.0

−2.0

 0.0

 2.0

 4.0

 7.0

Pearson
residuals:

p−value =
< 2.22e−16

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

−5.9

−4.0

−2.0

 0.0

 2.0

 4.0

 7.0

Pearson
residuals:

p−value =
< 2.22e−16

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Blue Hazel Green

Figure 21: Three mosaic plots for the HairEyeColor data using different color palettes. Top:
default HSV color palette. Middle: default HCL color palette. Bottom: a custom HCL color
palette.
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In Figure 21, the plot in the middle depicts the default palette, and the bottom plot an
alternative setting for Hue (h), Chroma (c), and Luminance (l).

Large positive residuals (greater than 4) can be found for brown eyes/black hair and blue
eyes/blond hair, and are colored in deep blue. On the other hand, there is a large negative
residual (less than −4) for brown eyes/blond hair, colored deep red. There are also three
medium-sized positive (negative) residuals between 2 and 4 (−2 and −4): the colors for them
are less saturated. Residuals between −2 and 2 are shaded in white (gray for HCL-shading).
The heuristic for choosing the cut-off points 2 and 4 is that the Pearson residuals are ap-
proximately standard normal which implies that the highlighted cells are those with residuals
individually significant at approximately the α = 0.05 and α = 0.0001 levels, respectively.
These default cut-off points can be changed to alternative values using the interpolate

argument (see Figure 22):

> mosaic(haireye, shade = TRUE, gp_args = list(interpolate = 1:4))

The elements of the numeric vector passed to interpolate define the knots of an interpolating
step function used to map the absolute residuals to saturation levels. The interpolate

argument also accepts a user-defined function, which then is called with the absolute residuals
to get a vector of cut-off points. Thus, it is possible to automatically choose the cut-off points
in a data-driven way. For example, one might think that the extension from four cut-off
points to a continuous shading—visualizing the whole range of residuals—could be useful.
We simply need a one-to-one mapping from the residuals to the saturation values:

> ipol <- function(x) pmin(x/4, 1)

Note that this ipol() function maps residuals greater than 4 to a saturation level of 1.
However, the resulting plot (Figure 22, right) is deceiving:

> mosaic(haireye, shade = TRUE, gp_args = list(interpolate = ipol),

+ labeling_args = list(abbreviate_labs = c(Sex = TRUE)))

Too much color makes it difficult to interpret the image, and the subtle color differences are
hard to catch. Therefore, we only included shadings with discrete cut-off points.

The third remaining dimension, the value, is used for visualizing the significance of a test
statistic. The user can either directly specify the p value, or, alternatively, a function that
computes it, to the p.value argument. Such a function must take observed and expected
values, residuals, and degrees of freedom (used by the independence model) as arguments. If
nothing is specified, the p value is computed from a χ2 distribution with df degrees of freedom.
The level argument is used to specify the confidence level: if p.value is smaller than 1 -

level, light colors are used, otherwise dark colors are employed. The following example using
the Bundesliga data shows the relationship of home goals and away goals of Germany’s pre-
mier soccer league in 1995: although there are two “larger” residuals (one greater than 2, one
less then −2), the χ2 test does not reject the null hypothesis of independence. Consequently,
the colors appear dark (see Figure 23, left):

> BL <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga, subset = Year == 1995)

> mosaic(BL, shade = TRUE)
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Figure 22: The HairEyeColor data. Left: shading with 4 cut-off points. Right: continuous
shading.

Note that in extended mosaic plots, bullets drawn for zero cells are shaded, too, bringing out
non-zero residuals, if any.

A shading function building upon shading_hsv() is shading_Friendly(), implementing the
shading introduced by Friendly (1994). In addition to the defaults of the HSV shading, it
uses the border color and line type to redundantly code the residuals’ sign. The following
example again uses the Bundesliga data from above, this time using the Friendly scheme
and, in addition, an alternative legend (see Figure 23, right):

> mosaic(BL, gp = shading_Friendly, legend = legend_fixed, zero_size = 0)

(The zero_size = 0 argument removes the bullets indicating zero observed values. This
feature is not provided in the original SAS implementation of the Friendly mosaic plots.)

A more “advanced” function building upon shading_hcl() is shading_max(), using the max-
imum statistic both to conduct the independence test and to visualize significant cells causing
the rejection of the independence hypothesis (Meyer et al. 2003; Zeileis et al. 2007). The level
argument of shading_max() then can be used to specify several confidence levels from which
the corresponding cut-off points are computed. By default, two cut-off points are computed
corresponding to confidence levels of 90% and 99%, respectively. In the following example,
we investigate the effect of a new treatment for rheumatoid arthritis on a group of female
patients using the maximum shading (see Figure 24):

> set.seed(4711)

> mosaic(~ Treatment + Improved, data = Arthritis, subset = Sex == "Female",

+ gp = shading_max)

The maximum test is significant although the residuals are all in the [−2, 2] interval. The
shading_hcl() function with default cut-off points would not have shown any color. In
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Figure 23: The Bundesliga data for 1995. Left: Non-significant χ2 test. Right: using the
Friendly shading and a legend with fixed bins.

addition, since the test statistic is the maximum of the absolute Pearson residuals, each
colored residual violates the null hypotheses of independence, and thus, the “culprits” can
immediately be identified.
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Figure 24: The Arthritis data (female patients) with significant maximum test.
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4. Labeling

One of the major enhancements in package vcd compared to mosaicplot() and assocplot()

in base R is the labeling in the strucplot framework which offers more features and greater
flexibility. Like shading, spacing, and drawing of legend and core plot, labeling is now carried
out by grapcon functions, rendering labeling completely modular. The user supplies either
a labeling function, or, alternatively, a generating function that parameterizes a labeling
function, to strucplot() which then draws the labels. Labeling is well-separated from the
actual plotting that occurs in the low-level core functions. It only relies on the viewport tree
produced by them, and the dimnames attribute of the visualized table. Labeling functions
are grapcons that “add ink to the canvas”: the drawing of the labels happens after the actual
plot has been drawn by the core function. Thus, it is possible to supply one’s own labeling
function, or to combine some of the basic functions to produce a more complex labeling. In
the following, we describe the three basic modules (labeling_text(), labeling_list(), and
labeling_cells()) and derived functions that build upon them.

4.1. Labels in the borders: labeling_text()

labeling_text() is the default for all strucplot displays. It plots labels in the borders
similar to the mosaicplot() function in base R, but is much more flexible: it is not limited to
4 dimensions, and the positioning and graphical parameters of levels and variable names are
customizable. In addition, the problem of overlapping labels can be handled in several ways.

As an example, again consider the Titanic data: by default, the variable names and levels
are plotted “around” the plot in a counter-clockwise way (see Figure 25, top left):

> mosaic(Titanic)

Note that the last two levels of the survived variable do overlap, as well as some adult and
child labels of the age Variable. This issue can be addressed in several ways. The “brute
force” method is to enable clipping for these dimensions (see Figure 25, top right):

> mosaic(Titanic, labeling_args = list(clip = c(Survived = TRUE, Age = TRUE)))

The clip parameter is passed to the labeling function via the labeling_args argument which
takes a list of parameters. clip itself takes a vector of logicals (one for each dimension). Al-
most all vectorized arguments in the strucplot framework can be abbreviated in the following
way: unnamed components (or the defaults, if there are none) are recycled as needed, but
overridden by the named components. Here, the default is FALSE, and therefore clipping is
enabled only for the survived and age variables. A more sensible solution to the overlap
problem is to abbreviate the levels (see Figure 25, middle left):

> mosaic(Titanic, labeling_args = list(abbreviate_labs = c(Survived = TRUE, Age = 3)))

The abbreviate argument takes a vector of integers indicating the number of significant char-
acters the levels should be abbreviated to (TRUE is interpreted as 1, obviously). Abbreviation
is performed using the abbreviate() function in base R. Another possibility is to rotate the
levels (see Figure 25, bottom):
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> mosaic(Titanic, labeling_args = list(rot_labels = c(bottom = 90, right = 0),

+ offset_varnames = c(right = 1), offset_labels = c(right = 0.3)),

+ margins = c(right = 4, bottom = 3))

Finally, we could also inhibit the output of repeated levels (see Figure 25, middle right):

> mosaic(Titanic, labeling_args = list(rep = c(Survived = FALSE, Age = FALSE)))

We now proceed with a few more “cosmetic” features (which do not all produce satisfactory
results for our sample data). A first simple, but effectful modification is to position all labels
and variables left-aligned (see Figure 26, top left):

> mosaic(Titanic, labeling_args = list(pos_varnames = "left", pos_labels = "left",

+ just_labels = "left", rep = FALSE))

Note that obviously we need to change the justification to "left" as well. We can achieve
the same effect by using the convenience function labeling_left():

> mosaic(Titanic, labeling = labeling_left)

Next, we show how to put all levels to the bottom and right margins, and all variable names
to the top and left margins (see Figure 26, top right):

> mosaic(Titanic, labeling_args = list(tl_labels = FALSE, tl_varnames = TRUE, abbreviate_labs = c(Survived = 1, Age = 3)))

The tl foo (“top left”) arguments are TRUE by default. Now, we will add boxes to the labels
and additionally enable clipping (see Figure 26, bottom left):

> mosaic(Titanic, labeling_args = list(tl_labels = FALSE, tl_varnames = TRUE,

+ boxes = TRUE, clip = TRUE))

The values to boxes and clip are recycled for all dimensions. The result is pretty close to
what calling mosaic() with the labeling_cboxed() wrapper does, except that variables and
levels, by default, are put to the top and to the left of the plot:

> mosaic(Titanic, labeling = labeling_cboxed)

Another variant is to put the variable names into the same line as the levels (see Figure 26,
bottom right—clipping for Survived and Age is, additionally, disabled, and Age abbreviated):

> mosaic(Titanic, labeling_args = list(tl_labels = TRUE, boxes = TRUE,

+ clip = c(Survived = FALSE, Age = FALSE, TRUE), abbreviate_labs = c(Age = 4),

+ labbl_varnames = TRUE), margins = c(left = 4, right = 1, 3))

labbl_varnames (“variable names to the bottom/left of the labels”) is a vector of logicals indi-
cating the side for the variable names. The resulting layout is close to what labeling_lboxed()
produces, except that variables and levels, by default, are left-aligned and put to the bottom
and to the right of the plot:
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Figure 25: Examples for possible labeling strategies for the Titanic data mosaic. Top left:
default labeling (many labels overlap). Top right: with clipping turned on. Middle left: Age

and Survived labels abbreviated. Middle right: Age labels not repeated. Bottom: Age and
Survived labels rotated.
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Figure 26: Advanced strategies for labeling of the Titanic data. Top left: left aligning of both
variable names and labels. Top right: changes in the margins (all variable names are in the
top and left margins, and all labels in the bottom and right margins). Bottom left: clipping
turned on, and boxes used. Bottom right: variable names beneath levels, clipping disabled
for the survival and age variables, and Age abbreviated.
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> mosaic(Titanic, labeling = labeling_lboxed, margins = c(right = 4, left = 1, 3))

A similar design is used by the doubledecker() function.

4.2. Labels in the cells: labeling_cells()

This labeling draws both variable names and levels in the cells. As an example, we use the
PreSex data on pre- and extramarital sex and divorce (see Figure 27, top left):

> mosaic(~ MaritalStatus + Gender, data = PreSex, labeling = labeling_cells)

In the case of narrow cells, it might be useful to abbreviate labels and/or variable names and
turn off clipping (see Figure 27, top right):

> mosaic(~ PremaritalSex + ExtramaritalSex, data = PreSex,

+ labeling = labeling_cells(abbreviate_labels = TRUE, abbreviate_varnames = TRUE, clip = FALSE))

For some data, it might be convenient to combine cell labeling with border labeling as done
by labels_conditional() (see Figure 27, bottom left):

> mosaic(~ PremaritalSex + ExtramaritalSex | MaritalStatus + Gender, data = PreSex, labeling = labeling_conditional(abbreviate_varnames = TRUE, abbreviate_labels = TRUE, clip = FALSE, gp_text = gpar(col = "red")))

Additionally, the cell labeling allows the user to add arbitrary text to the cells by supplying a
character array in the same shape as the data array to the text argument (cells with missing
values are ignored). In the following example using the Titanic data, this is used to add all
observed values greater than 5 to the cells after the mosaic has been plotted (see Figure 27,
bottom right):

> mosaic(Titanic, labeling_args = list(abbreviate_labs = c(Survived = 1, Age = 4)), pop = FALSE)

> tab <- ifelse(Titanic < 6, NA, Titanic)

> labeling_cells(text = tab, clip = FALSE)(Titanic)

4.3. A simple list of labels: labeling_list()

If problems with overlapping labels cannot satisfactorily resolved, the last remedy could be
to simply list the levels below the plot (see Figure 28):

> mosaic(Titanic, labeling = labeling_list, margins = c(bottom = 5))

The number of columns can be specified.

5. Spacing

Spacing of strucplot displays is customizable in a similar way than shading. The spacing

argument of the strucplot() function takes a list of unit vectors, one for each dimension,
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Figure 27: Cell labeling. Top left: default labeling using the PreSex data. Top right: abbre-
viated labels. Bottom left: conditional labeling (labels abbreviated and in red for clarity).
Bottom right: user-supplied text (observed frequencies exceeding 5) added to a mosaic display
of the Titanic data. Note that clipping is on by default (top left), and has explicitly been
turned off for the three other plots.
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specifying the space between the tiles corresponding to the levels. Consider again the intro-
ductory example of the Arthritis data (Figure 1). Since we are interested in the effect of
the medicament in the placebo and treatment groups, a mosaic plot is certainly appropriate
to visualize the three levels of Improved in the two Treatment strata. Another conceptual
approach is to use spine plots with highlighting (Hummel 1996). A spine plot is a variation
of a bar plot where the heights of the bars are held constant, whereas the widths are used
to represent the number of cases in each category. This is equivalent to a mosaic plot for
a one-way table. If a second (indicator) variable is highlighted in a spine plot, we obtain
a display equivalent to a simple mosaic display for a two-way table, except that no space
between the levels of the highlighted variable is used. In the Arthritis example, we will
highlight patients with Marked improvement in both groups. To obtain such a display within
the strucplot framework, it suffices to set the space between the Improved tiles to 0 (see
Figure 29):

> (art <- structable(~Treatment + Improved, data = Arthritis, split_vertical = TRUE))

Treatment Placebo Treated

Improved

None 29 13

Some 7 7

Marked 7 21

> (my_spacing <- list(unit(0.5, "lines"), unit(c(0, 0), "lines")))

[[1]]

[1] 0.5lines

[[2]]

[1] 0lines 0lines

> my_colors <- c("lightgray", "lightgray", "black")

> mosaic(art, spacing = my_spacing, gp = gpar(fill = my_colors, col = my_colors))

Note that the default and formula methods for mosaic() provide a convenience interface for
highlighting. A similar plot (with slightly different shading) than the previous one can be
obtained using:

> mosaic(Improved ~ Treatment, data = Arthritis, split_vertical = TRUE)

The strucplot framework also provides a set of spacing grapcon generators which compute
suitable spacing objects for typical applications. The simplest spacing is spacing_equal()

that uses the same space between all tiles (see Figure 30, top left):

> mosaic(art, spacing = spacing_equal(unit(2, "lines")))

spacing_equal() is the default grapcon generator for two-dimensional tables. Slightly more
flexible is spacing_dimequal() that allows an individual setting for each dimension (see
Figure 30, top right):
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Figure 29: Spine plot for the Arthritis data using the strucplot framework.
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> mosaic(art, spacing = spacing_dimequal(unit(1:2, "lines")))

The default for multi-way contingency tables is spacing_increase() which uses increasing
spaces for the dimensions. The user can specify a start value and the increase factor (see
Figure 30, bottom left):

> mosaic(art, spacing = spacing_increase(start = unit(0.5, "lines"), rate = 1.5))

For the arthritis example above, we could as well have used spacing_highlighting() which
is similar to spacing_increase() but sets the spacing in the last splitting dimension to 0
(see Figure 30, bottom right):

> mosaic(art, spacing = spacing_highlighting, gp = my_colors)

Finally, spacing_conditional() can be used for visualizing conditional independence: it
combines spacing_equal() (for the conditioned dimensions) and spacing_increase() (for
the conditioning dimensions). As an example, consider Figure 3: the spacing clearly allows
to better distinguish the conditioning variables (Gender and MaritalStatus) from the con-
ditioned variables (PremaritalSex and ExtramaritalSex). This spacing is the default when
conditional variables are specified for a strucplot display (see Section 2).

6. Example: Ovarian cancer survival

In the following, we demonstrate some of the described techniques in analyzing a data set
originating from (Obel 1975) (taken from Andersen 1991) about a retrospective study of ovary
cancer carried out in 1973. Information was obtained from 299 women, who were operated
for ovary cancer 10 years before. The data consists of four binary variables: the stage of
the cancer at the time of operation (levels: early, advanced), the type of operation per-
formed (radical, limited), the survival status after 10 years (yes, no), and xray indicating
whether X-ray treatment was received (yes, no).

The dataset in vcd comes pretabulated in a data frame, so we first create the four-way table:

> tab <- xtabs(Freq ~ stage + operation + xray + survival, data = OvaryCancer)

A “flattened” textual representation can be obtained using structable():

> structable(survival ~ ., data = tab)

survival no yes

stage operation xray

early radical no 10 41

yes 17 64

limited no 1 13

yes 3 9

advanced radical no 38 6

yes 64 11

limited no 3 1

yes 13 5
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Figure 30: Varying spacing for the Arthritis data. Top left: equal spacing for all dimensions.
Top right: different spacings for individial dimensions. Bottom left: increasing spacing.
Bottom right: spacing used for highlighting.
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A first overview can be obtained using a pairs plot (Figure 31):

> dpa <- list(var_offset = 1.2, rot = -30, just_leveltext= "left")

> pairs(tab, diag_panel = pairs_barplot, diag_panel_args = dpa)
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Figure 31: Pairs plot for the OvaryCancer data showing mosaic displays for all pairwise
distributions and bar plots for all marginal distributions.

The pairs plot, by default, creates mosaic displays for all pairwise variable combinations,
and bar plots in the diagonal to visualize the absolute frequencies of the variables. The
var_offset argument modifies the offset of the (centered) variable names to avoid overlap
with the bars. Additionally, we use the rot and the just_leveltext arguments to rotate
the level names, again to avoid their overlap. First, we consider the marginal distributions.
The study design involved (nearly) the same number of survived (150) and deceased (149)
patients. Similarly balanced, 158 cases were in an advanced and 141 in an early stage. Most
patients (251, 84%) were treated with a radical operation, and 186 (62%) were submitted to
X-ray treatment. Next, we inspect the two-way interaction of the influencing factors (stage,
operation, and xray): the corresponding mosaics exhibit symmetric, regular shapes with
aligned tiles, which indicate no marginal interaction between these variables. The same is
true for the interactions of survival with operation and xray, respectively. Only the stage
seems to influence survival: here, the tiles are “shifted”.
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A different view on the data, focused on the influence of the explanatory variables on Survival,
can be obtained using a doubledecker plot (Figure 32):

> doubledecker(survival ~ stage + operation + xray, data = tab)

stage
operation
xray

early
radical
no yes

limited
no yes

advanced
radical
no yes

limited
noyes

yes

no

survival

Figure 32: Doubledecker plot for the OvaryCancer data showing the conditional distribution
of X-ray, given operation, given stage, and with survival highlighted.

From a technical point of view, the display is constructed as a mosaic plot showing the
conditional distribution of survival, given xray, given operation, given stage, with vertical
splits for the conditioning variables and horizontal ones for survival. Additionally, there is
zero space between the tiles of the last dimension and a binary shading is used for survived
and deceased patients. Conceptually, this plot is interpreted as a mosaic plot of just the
influencing variables, with survival highlighted in the tiles. Thus, the plot really shows the
influence of the explanatory variables on survival. Clearly, the survival rate is higher among
patients in an early stage, but neither radical operation nor X-ray treatment seem to improve
the situation. From this exploratory phase, the survival rate seems to be slightly higher for
patients who received a limited operation only, whereas the effect for X-ray treatment is less
marked.

To visualize inference results, we can make use of residual-based shadings, investigating log-
linear models for the four-way table. Figure 33 visualizes the null model, where survival is
independent from the combined effect of operation, X-ray treatment, and stage:

> split <- c(TRUE, TRUE, TRUE, FALSE)

> mosaic(tab, expected = ~ survival + operation * xray * stage, split_vertical = split)

The model is clearly rejected (p-value: 0.000). From the exploratory phase of our analysis,
we (only) suspect stage to be influential on the survival rate. A corresponding hypothesis is
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that survival be independent of xray and operation, given stage. The model is specified
using the expected argument, either using the loglin() interface or the loglm() formula
interface (the resulting mosaic plot is shown in Figure 34):

> mosaic(tab, expected = ~ (survival + operation * xray) * stage, split_vertical = split)

Thus, based on this data, only pre-diagnosis seems to matter in ovarian cancer therapy.

7. Conclusion

In this paper, we describe the “strucplot” framework for the visualization of multi-way contin-
gency tables. Strucplot displays include popular basic plots such as mosaic, association, and
sieve plots, integrated in a unified framework: all can be seen as visualizations of hierarchical
conditional flat tables. Additionally, these core strucplot displays can be combined into more
complex, specialized plots, such as pairs and trellis-like displays for visualizing conditional
independence. Residual-based shadings permit the visualization of log-linear models and the
results of independence tests. The framework’s modular design allows flexible customization
of the plots’ graphical appearance, including shading, labeling, spacing, and legend, by means
of graphical appearance control (“grapcon”) functions. These “graphical hyperparameters”
are customized and created by generating functions. Our work includes a set of predefined
grapcon generators for typical analysis tasks, and user-level extensions can easily be added.
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A. Data sets

The data set names in the paper are those from the R system. In the following, we give a
short description of each data set.

Arthritis Data from a double-blind clinical trial investigating a new treatment for rheuma-
toid arthritis. Source: Koch and Edwards (1988). Taken from: Friendly (2000). Pack-
age: vcd.

Bundesliga Results from the first German soccer league in the years 1995/6 (Knorr-Held
1999) and 2001/2 (Collected by: Achim Zeileis). Package: vcd.

HairEyeColor Distribution of hair and eye color and gender in 592 statistics students. The
gender information is artificial. Source: Snee (1974). Taken from: Friendly (2000).
Package: datasets (included in base R).

OvaryCancer Data about a retrospective study of ovary cancer carried out in 1973. Informa-
tion was obtained from 299 women, who were operated for ovary cancer 10 years before.
Source: Obel (1975). Taken fromn: Andersen (1991). Package: vcd.

PreSex Data on pre- and extra-marital sex and divorce. Source: Thornes and Collard (1979).
Taken from Gilbert (1981). Package: vcd.

Titanic Information on the fate of passengers on the fatal maiden voyage of the ocean
liner “Titanic”, summarized according to economic status (class), gender (Sex), age and
survival. Data originally collected by the British Board of Trade in their investigation
of the sinking. Taken from: Dawson (1995). Package: datasets (included in base R).

UCBAdmissions Aggregate data on applicants to graduate school at Berkeley for the six
largest departments in 1973 classified by admission and gender. Source: Bickel, Hammel,
and O’Connell (1975). Taken from: Friendly (2000). Package: datasets (included in
base R).
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http://dx.doi.org/10.1198/106186007X237856
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