
minIni
Version 1.3
April 2014

MININI is a programmer’s library to read and write “INI” files in embedded systems. MININI takes
little resources, has a deterministic memory footprint, and can be configured for various kinds
of file I/O libraries.
The principal purpose for MININI is to be used on embedded systems that run on an RTOS (or
even without any operating system). MININI requires that such a system provides a kind of
storage and file I/O system, but it does not require that this file I/O system is compatible with
the standard C/C++ library —indeed, the standard library is often too big and resource-hungry
for embedded systems.

Contents
Introduction . 1

Limitations . 1
INI file syntax .1

Using minIni .3
The glue file .3
Multi-tasking .7
Key and section enumeration .7

Function reference .8
Appendices .15

A: Example glue files .15
B: License .19

Index .21

CompuPhase

ii

Trademarks
“CompuPhase” is a trademark of ITB CompuPhase.
“Linux” is a registered trademark of Linus Torvalds.
“Microchip” is a registered trademark of Microchip Technology Inc.
“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.
“Unicode” is a registered trademark of Unicode, Inc.
“wxWidgets” is a community product lead by Julian Smart and Robert Roebling.

Copyright
c⃝ Copyright 2008–2014, CompuPhase; Eerste Industriestraat 19–21 Bussum, The Netherlands (Pays Bas);
voice: (+31)-(0)35 6939 261; fax: (+31)-(0)35 6939 293
e-mail: info@compuphase.com; homepage: http://www.compuphase.com
The MININI library was derived in part from the article “Multiplatform .INI Files” by Joseph J. Graf in the March 1994
issue of Dr. Dobb’s Journal.
The examples and programs in this manual have been included for their instructional value. They have been tested with
care, but are not guaranteed for any particular purpose.

INI file syntax — 1

Introduction
MININI is a library to read and write simple configuration files with a format compatible with
“INI” files. The MININI library features a small code size footprint and it requires little resources
(e.g. RAM). It is therefore suitable for use in (small) embedded systems.

The INI file format is best known from Microsoft Windows, with its functions GetProfileString
and WriteProfileString to read from andwrite to INI files. The functions inMININI aremodelled
after the functions of the Windows SDK, but they are not fully compatible with them.

Although the main feature of MININI is that it is small and minimal, it has a few other features:
⋄ MININI supports reading keys that are outside a section, and it thereby supports configuration
files that do not use sections (but that are otherwise compatible with INI files).

⋄ Section and key enumeration are supported.
⋄ You may use a colon to separate key and value; the colon is equivalent to the equal sign. That
is, the strings “Name: Value” and “Name=Value” have the same meaning.

⋄ Trailing comments (i.e. behind a key/value pair on a line) are allowed. The hash character
(“#”) is an alternative for the semicolon to start a comment.

⋄ When writing a value that contains a comment character (“;” or “#”), that value will auto-
matically be put between double quotes; when reading the value, these quotes are removed.
When a double-quote itself appears in the setting, these characters are escaped.

⋄ Flexible rational number support, either fixed-point or floating-point.
⋄ Since writing speed ismuch lower than reading speed in Flash memory (SD/MMC cards, USB
memory sticks), MININI caches “file writes” to optimize performance, and it does so in a way
that does not require extra memory.

Limitations
MININI’s design is aimed at being full-featured while using a small and deterministic memory
footprint. It is not optimized for speed. On performance-sensitive code, I advice to read any
values or settings that are needed ahead of the time and to store these in variables.

Specifically, MININI does not cache any key/value pairs that it reads from the INI file. It also
does not keep the INI file open between calls; MININI closes the file after every read or write
operation. When writing to an INI file, MININI creates a temporary file into which it copies (with
modifications) the original file. On success, it deletes the original file and renames the temporary
file back.

INI file syntax
An INI file has a simple syntax with name/value pairs in a plain text file. The name must be
unique (per section) and the value must fit on a single line. An INI file is commonly separated
into sections —in MININI, this is optional. A section is a name between square brackets, like
“[Network]” in the example below.
LISTING: Example INI file

[Network]
hostname = My Computer
address = dhcp
dns = 192.168.1.1

2 — INI file syntax

In the API and in this documentation, the “name” for a setting is denoted as the key for the
setting. The key and the value are separated by an equal sign (“=”). MININI supports the colon
(“:”) as an alternative to the equal sign for the key/value delimiter.
Section and key name comparisons are case insensitive in MININI (as is the case in the Microsoft
Windows API). In the INI file, you may type “DNS = 192.168.1.1” equally well (and meaning the
same thing) as “dns = 192.168.1.1”.
Leading a trailing spaces around values or key names are removed. If you need to include
leading and/or trailing spaces in a value, put the value between double quotes. The ini gets
function strips off the double quotes from the returned value. Function ini puts adds double
quotes if the value to write contains trailing white space (or special characters).
MININI ignores spaces around the “=” or “:” delimiters, but it does not ignore spaces between
the brackets in a section name. In other words, it is best not to put spaces behind the opening
bracket “[” or before the closing bracket “]” of a section name.
Comments in the INI must start with a semicolon (“;”) or a hash character (“#”), and run to the
end of the line. A comment can be a line of its own, or it may follow a key/value pair.

The glue file — 3

Using minIni
The first step in using MININI is making sure that it compiles. The library consists of only one
C file and two header files, so the amount of configuration to do is minimal. If you cannot use
the standard C/C++ library, there is, however, a configuration file (or “glue” file) that you must
make or customize; this file is explained in the next section. The MININI distribution comes with
a default configuration file that maps to the standard C library (specifically the file I/O functions
from the “stdio” package) and example glue files for two embedded file system libraries for
embedded systems —see appendix A of this manual.
Once you have a good glue file, you can add the source file of MININI to your project and include
the header file “minIni.h” in your source code files. In your source code, you can then use the
functions in the MININI library to read text and values from INI files and to write text and values
to an INI file. See the function reference for details.
MININI uses string functions from the standard C/C++ library, including one function that is not
in the ANSI C standard: strnicmp. On the Unix and Linux platforms, this function is usually
called strncasecmp. If you are using a GNU GCC compiler, but you are not compiling for a
Linux or “BSD” platform, you may need to define strnicmp as strncasecmp in the glue file (see
below). If your compiler provides neither strnicmp nor strncasecmp, you can use a portable
implementation in MININI by defining the macro PORTABLE_STRNICMP in the glue file (or on the
compiler command line).
A notable limitation of MININI is that there is a (fixed) maximum length of a line that can be read
from an INI file. This maximum length is configurable (at compile-time, not at run-time) and it
may be short on embedded systems —see page 4.
When running in an Unicode environment or when moving the INI file across platforms, there
may be other considerations concerning the use of MININI —see the relevant sections in this
chapter, specifically page 6.

The glue file
The MININI library must be configured for a platform with the help of a so-called “glue file”. This
glue file contains macros (and possibly functions) that map file reading and writing functions
used by the MININI library to those provided by the operating system. The glue file must be
called “minGlue.h”.
One general configuration is whether internal error checking via “assertions” is active. The
MININI library uses the assert macro to help catch errors in the MININI library and/or catch
errors in how the application interfaces with the MININI library. To build a release version, one
typically recompiles all source code with the NDEBUG macro set.
In the case that your (embedded) platform lacks an assert.h file, you may want to define NDEBUG
in the minGlue.h file.

• I/O functions
The MININI source code requires functions from a file I/O library to perform the actual reading
and writing. This can be any library; MININI does not rely on the availability of a standard C
library, because embedded operating systems may have limited support for file I/O. Even on
full operating systems, separating the file I/O from the INI format parsing carries advantages,
because it allows you to cache the INI file and thereby enhance performance.
The functions that you need to implement, or map to standard file I/O functions are:

4 — The glue file

LISTING: Functions to map in the “glue file”
int ini_openread(const char *filename, INI_FILETYPE *file)
int ini_openwrite(const char *filename, INI_FILETYPE *file)
int ini_close(INI_FILETYPE *file)
int ini_read(char *buffer, size_t size, INI_FILETYPE *file)
int ini_write(char *buffer, INI_FILETYPE *file)
int ini_rename(const char *source, const char *dest)
int ini_remove(const char *filename)
int ini_tell(INI_FILETYPE *file, INI_FILEPOS *pos)
int ini_seek(INI_FILETYPE *file, INI_FILEPOS *pos)

All functions should return zero on failure and a non-zero value on success. For examples of
“implementations” for the above functions, see appendix A on page 15.

The INI_FILETYPE type used in the above “glue” functions, must also be defined in the glue
file. If you are using the standard C/C++ file I/O library, this is the “FILE*” type of the standard
C/C++ file I/O library. On embedded systems with a different I/O library, chances are that you
need a different handle or “structure” to identify the storage. For example:

#define INI_FILETYPE HANDLE

The MININI functions will declare variables of the INI_FILETYPE type and pass these variables
to sub-functions (including the glue interface functions) by reference.

For read-only support of INI files, only the macros/functions ini_openread, ini_close and
ini_read are needed (see also page 5). The other functions are only needed for writing support.
The type that holds the “file position” (for functions ini_tell and ini_seek) must be declared
as well. For applications that use the standard C/C++ file I/O library functions fgetpos and
fsetpos, this is the fpos_t type.

#define INI_FILEPOS fpos_t

Function ini_openread is for opening an existing file, and for opening it for reading only. Func-
tion ini_openwritemust create a new file, or delete and re-create an existing file. The definition
of the function ini_openrewrite is optional; if available, it is used to open an existing file for
writing, but without truncating the file (many libraries call this “read + write mode”). Function
ini_openrewrite allows for an optimization in the special case that an update of a setting does
not cause the file length to be changed.

On Microsoft Windows and DOS, files can be opened in either “text mode” or in “binary mode”,
and this relates mostly on the line termination translation. Despite INI files being text files, it
is advised to open the INI file in binary mode.

See see appendix A on page 15 for examples of glue files for various file systems.

• Buffer size (maximum line length)
Another item that needs to be configured is the buffer size. The functions in the MININI library
allocate this buffer on the stack, so the buffer size is directly related to the stack usage. In
addition, the buffer size determines the maximum line length that is supported in the INI file
and the maximum path name length for the temporary file (for writing support). For example,
minGlue.h could contain the definition:

#define INI_BUFFERSIZE 512

The glue file — 5

The above macro limits the line length of the INI files supported by MININI to 512 characters.

The buffer size declared here is also the size of the “write cache” that MININI uses to optimize
performance on file writes.

• Read-only support
In its default configuration, MININI supports both reading and writing INI files. If your application
does not require write support, you can add a setting to the minGlue.h file to strip out the
unneeded code.

#define INI_READONLY

When writing a setting to an INI, MININI writes it to a temporary file, copies the other sections
and keys from the original INI file, and then deletes the original file and renames the temporary
file to the name of the original file. This approach uses the least amount of memory. The path
name of the temporary file is the same as the input file, but with the last character set to a tilde
(“~”).

Furthermore, when writing to the temporary file, MININI on repeatedly looks ahead in the INI
and jumps back to a position that it marked earlier. The goal of this design is to minimize
the number of inidividual “write actions” to the file, because on Flash memory (and EEPROM
memory), writing is an order of magnitude slower than reading.

• Rational number support
MININI optionally supports reading and writing single-precision floating point values —see the
functions ini getf and ini putf. Embedded processors may lack floating point hardware and
software emulation of floating-point operations may be too costly in resources (memory). For
these platforms, alternatives are to switch to a fixed-point representation or, when rational num-
bers are not relevant for the project, to disable the rational number support inMININI altogether.

To enable rational number support, a macro for the type and macros or interface functions for
number-to-text conversions must be added to minGlue.h. For the standard C/C++ library, you
can add the following definitions to the glue file:

#define INI_REAL float
#define ini_ftoa(string,value) sprintf((string),”%f”,(value))
#define ini_atof(string) (INI_REAL)strtod((string),NULL)

For a different representation of rational numbers, only the definitions in minGlue.h have to
changes. The following example is based on the “fixedptc” library by Ivan Voras.

#define INI_REAL fixedpt
#define ini_ftoa(string,value) fixedpt_str((value),(string))
#define ini_atof(string) fixedpt_val((string))

To disable rational number support, remove the declaration for the INI_REAL type from the
minGlue.h file.

6 — The glue file

• Unicode (enable/disable)
MININI can be compiled with Unicode support, but it delegates storing the actual characters to
the “glue” routines. Although you can use standard Unicode file reading and writing routines to
create and query INI files in Unicode text format, it is advised to keep the INI file format as ASCII,
for best compatibility with other implementations. To store Unicode characters in the ASCII file,
convert the Unicode data to (and from) UTF-8 (the MININI library does not provide functions for
this conversion).
It is advised to keep the section and key names as ASCII or ANSI Latin-1; only the “values” of each
key should be encoded as UTF-8.
Currently, all distributions of Linux lack a header file called tchar.h which adds a portability
layer for source code that can be compiled as ASCII or as Unicode. MININI relies on tchar.hwhen
compiling for Unicode. Therefore, when compiling a Unicode application under Linux, you have
two options: create a minimal version of tchar.h yourself, or compile MININI for the 8-bit ANSI
character set, while the remainder of the application is Unicode. To force-compile MININI for
ANSI, add the definition INI_ANSIONLY in the glue file (“minGlue.h”). For example:

#define INI_ANSIONLY /* ignore UNICODE or _UNICODE macros, compile as ASCII/ANSI */

• Line termination
On Microsoft Windows and DOS, lines of text files are usually terminated by a CR-LF character
pair (“\r\n” in C/C++ terminology). On Linux and Unix, the line terminator is only the LF
character and on the Macintosh, it is only the CR character.
The line termination convention is not important when reading from INI files, because MININI
strips off all trailing white space (and control characters such as carriage-return and line-feed
are considered white space). The line termination convention is also not important when the
INI file is only accessed by MININI. Finally, if you use the standard C/C++ library as the back-
end for reading and writing files, this standard C/C++ library may already handle the platform-
dependent line termination for you.
However, if you wish to read and adjust the INI files with other applications, across platforms
—e.g. edit the INI file with a simple text editor as Notepad on Microsoft Windows and then store
it on an embedded device with a Linux-based operating system, then it may be advantageous to
tell MININI the line termination characters to use. To do so, define the macro INI_LINETERM in
the file “minGlue.h” and set it to the character or characters to use. For example:

#define INI_LINETERM ”\r\n”

• Summary of configuration macros
INI ANSIONLY If this macro is defined, INI files are forced to be written with 8-bit charac-

ters (ASCII or ANSI character sets), regardless of whether the remainder of the
application is written as Unicode. See page 6.

INI BUFFERSIZE The maximum line length that is supported, as well as the maximum path
length for temporary file (if write access is enabled). The default value is 512.
See page 4.

INI FILEPOS The type for a position in a file. This is a required setting if writing support is
enabled.

INI FILETYPE The type for a variable that represents a file. This is a required setting. See
page 4.

Key and section enumeration — 7

INI LINETERM This macro should be set to the line termination character (or characters). If
left undefined, the default is a line-feed character. Note that the standard file
I/O library may translate a line-feed character to a carriage-return/line-feed
pair (this depends on the file I/O library). See page 6

INI READONLY If this macro is defined, write access is disabled (and the code for writing INI
files is stripped from the MININI library. See page 5

INI REAL The type for a variable that represents a rational number. If left undefined,
rational number support is disabled. See page 5.

NDEBUG If defined, the assert macro in the MININI source code is disabled. Typi-
cally developers build with assertions enabled during development and dis-
able them for a release version. If your platform lacks an assert macro, you
may want to define the NDEBUG macro in the minGlue.h file.

PORTABLE STRNICMP
When this macro is defined, MININI uses an internal, portable strnicmp func-
tion. This is required for platforms that lack this function —note that MININI
already handles the common case where this function goes under the name
strncasecmp. See page 3.

Multi-tasking
The MININI library does not have any global variables and it does not use any dynamically allo-
cated memory. Yet, the library should not be considered “thread-safe” or re-entrant, because it
implicitly uses a particular shared resource: the file system.
Multiple tasks reading from an INI file do not pose a problem. However, when one task is writing
to an INI file, no other tasks should access this INI file —neither for reading, nor for writing. It
might be easier, in the implementation, to serialize all accesses of the INI file.
The first advise in protecting resources from concurrent access in a multi-tasking environment
is to avoid sharing resources between tasks. If only a single task uses a resource, no semaphore
protection is necessary and no priority inversion or deadlock problems can occur. This advise
also applies to the MININI library. If possible, make a single task the “owner” of the INI file and
create a client/server architecture for other tasks to query and adjust settings.
If the INI file must be shared between tasks (and at least one of the tasks writes to the INI file),
you need to write wrappers around the functions of the MININI library that block on a mutex or
binary semaphore.

Key and section enumeration
MININI can list all sections in an INI file and all keys in a section, but in a different way than the
function GetProfileString from the Microsoft Windows API. To list all sections, call function
ini getsection with an incremental “index” number until it fails. Similarly, to list all keys in
a section, call ini getkey with an incremental “index” number (plus the name of the section)
until it fails.
LISTING: Browsing through all keys and all sections in “config.ini”

int s, k;
char section[40], key[40];
for (s = 0; ini_getsection(s, section, sizeof section, ”config.ini”) > 0; s++) {

printf(”[%s]\n”, section);
for (k = 0; ini_getkey(section, k, key, sizeof key, ”config.ini”) > 0; k++)

printf(”\t%s\n”, key);
} /* for */

8 — Function reference

Function reference
In addition to the functions in plain C, minIni comes with a C++ class. When creating a variable
of the minIni class, you pass in the name of the INI file once, so that this name does not need
to be passed to every other function. The class exists for the standard C++ string library and
for wxWidgets, using the wxString type. The function reference only lists the methods with the
std::string type, but these are replaced by versions that use wxString when compiling for
wxWidgets.

minIni::minIni class constructor
The minIni constructor creates an instance of the minIni class.
Syntax: minIni(const std::string& filename)

filename The full file name of the INI file to use for all reads and writes, through
this instance. The filename format and specifications, and whether or
not this parameter may include a path, depends on the underlying file
I/O library.

Example: Creating a class instance to read a setting (C++ only):
minIni ini(”config.ini”);
std::string username = ini.gets(”Users”, ”admin”);

minIni::del Delete a section or a key
Delete a key or an entire section.
Syntax: bool del(const std::string& Section, const std::string& Key)

bool del(const std::string& Section)

Section The name of the section.
Key The name of the key.

Returns: true on success, false on failure.
Notes: This method is the equivalent of ini_puts with the parameter Key and/or Value

parameters to NULL.
This function is unavailable if MININI is configured as a read-only library (page 5).

See also: ini puts

ini getbool / minIni::getbool Read a “truth” flag
ini_getbool returns the zero for false or one for true, depending on the value that is found in
the given section and at the given key.
Syntax: int ini getbool(const char *Section, const char *Key, int DefValue,

const char *Filename)

bool getbool(const std::string& Section, const std::string& Key,
bool DefValue=false)

ini getf / minIni::getf — 9

Section The name of the section. If this parameter is NULL or an empty string,
the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.
DefValue The default value, which will be returned if the key is not present in

the INI file. Even though it is declared as an “int” in the C interface, it
should be either 0 (zero) or 1 (one).

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: The true/false flag as interpreted from the value read at the given key, or DefValue
if the key is not present in the given section (or if it cannot be interpreted to either
a “true” or a “false” flag).
Specifically, the return value depends on the first letter of the value read at the key.
If that first character is:
⋄ “Y”, “T” or “1”, the function returns true (or 1);
⋄ “N”, “F” or “0”, the function returns false (or 0);
⋄ anything else, the function returns parameter DefValue.

Notes: To set a boolean value in the C++ interface, use minIni::put; For the C interface,
use either ini putl. Alternatively, you can store texts like “Yes” and “No” at the key
using minIni::put and ini puts.

See also: ini getl

ini getf / minIni::getf Read a rational number
ini_getf returns the numeric value that is found in the given section and at the given key. The
value may have a fractional part (i.e. rational numbers).
Syntax: INI REAL ini getf(const char *Section, const char *Key,

INI REAL DefValue, const char *Filename)
INI REAL getf(const std::string& Section, const std::string& Key,

INI REAL DefValue=0)
Section The name of the section. If this parameter is NULL or an empty string,

the Key is searched outside any section.
Key The name of the key. This parameter may not be NULL.
DefValue The default value, which will be returned if the key is not present in the

INI file.
Filename The name of the INI file. The filename format and specifications, and

whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: The value read at the given key, or DefValue if the key is not present in the given
section.

Notes: Rational number support must have been enabled to use the function —see page
5. The type for the rational numbers, INI_REAL, depends on the configuration of
MININI.

See also: ini getl, ini putf

10 — ini getkey / minIni::getkey

ini getkey / minIni::getkey Enumerate keys

Read the name of an indexed key inside a given section.

Syntax: int ini getkey(const char *Section, int Index, char *Buffer,
int BufferSize, const char *Filename)

str::string getkey(const std::string& Section, int Index)

Section The name of the section. If this parameter is NULL or an empty string,
the keys outside any section are enumerated.

Index The zero-based index of the key to return.

Buffer The buffer into which this function will store the key name.

BufferSizeThe size of the buffer pointed at by parameter Buffer. This is the max-
imum number of characters that will be read and stored.

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: The C function returns the number of characters that were read, or zero if no (more)
keys are present in the specified section. The C++ method returns the name of the
key in a string.

Example: Enumerating keys in section “Devices”:

int k;
char name[20];
for (k = 0; ini_getkey(”Devices”, k, name, 20, ”config.ini”) > 0; k++)

printf(”%s\n”, name);

See also: ini getsection

ini getl / minIni::getl Read a numeric value

ini_getl returns the integer value (a “whole number”) that is found in the given section and at
the given key.

Syntax: long ini getl(const char *Section, const char *Key, long DefValue,
const char *Filename)

long getl(const std::string& Section, const std::string& Key,
long DefValue=0)

int geti(const std::string& Section, const std::string& Key,
int DefValue=0)

Section The name of the section. If this parameter is NULL or an empty string,
the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.

DefValue The default value, which will be returned if the key is not present in the
INI file.

ini gets / minIni::gets — 11

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: The value read at the given key, or DefValue if the key is not present in the given
section.

If the key is present, but it does not represent a decimal number, this function may
return zero or an incorrect value.

Notes: The number must be in decimal or in hexadecimal format. For hexadecimal values,
the value must be preceded with “0x”; for example, 0x1234 stands for the decimal
value 4660.

See also: ini getf, ini gets, ini putl

ini gets / minIni::gets Read a string

ini_gets reads the textual value that is found in the given section and at the given key.

Syntax: int ini gets(const char *Section, const char *Key,
const char *DefValue, char *Buffer, int BufferSize, const
char *Filename)

std::string gets(const std::string& Section,
const std::string& Key,
const std::string& DefValue=””)

Section The name of the section. If this parameter is NULL or an empty string,
the Key is searched outside any section.

Key The name of the key. This parameter may not be NULL.

DefValue The default value, which will be returned (in parameter Buffer) if the
key is not present in the INI file.

Buffer The buffer into which this function will store the data read.

BufferSizeThe size of the buffer pointed at by parameter Buffer. This is the max-
imum number of characters that will be read and stored.

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: The C function returns the number of characters that were read. The C++ method
returns the string read at the given key, or DefValue if the key is not present in the
given section.

See also: ini getl, ini puts

12 — ini getsection / minIni::getsection

ini getsection / minIni::getsection Enumerate sections

ini_getsection reads the name of an indexed section.

Syntax: int ini getsection(int Index, char *Buffer, int BufferSize,
const char *Filename)

std::string getsection(int Index)

Index The zero-based index of the section to return.

Buffer The buffer into which this function will store the section name.

BufferSizeThe size of the buffer pointed at by parameter Buffer. This is the max-
imum number of characters that will be read and stored.

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: The C function returns the number of characters that were read, or zero if no (more)
sections are present in the INI file. The C++ method returns the name of the section
in a string.

Example: Enumerating all sections in file “config.ini”:

int s;
char name[20];
for (s = 0; ini_getsection(s, name, 20, ”config.ini”) > 0; s++)

printf(”%s\n”, name);

See also: ini getkey

ini putf / minIni::put Store a rational number

ini_putf stores the numeric value that in the given section and at the given key. The numeric
value is written as a rational number, with a “whole part” and a fractional part.

Syntax: int ini putf(const char *Section, const char *Key, INI REAL Value,
const char *Filename)

bool put(const std::string& Section, const std::string& Key,
INI REAL Value)

Section The name of the section. If this parameter is NULL or an empty string,
the Key is stored outside any section (i.e. above the first section, if the
INI file has any sections).

Key The name of the key. This parameter may not be NULL.

Value The value to write at the key and the section.

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: 1/true on success, 0/false on failure.

ini puts / minIni::put — 13

Notes: This function is unavailable if MININI is configured as a read-only library (page 5). It
is also unavailable if rational number support has not been enabled (page 5).
The type for the rational numbers, INI_REAL, depends on the configuration ofMININI.

See also: ini getf, ini putl

ini putl / minIni::put Store a numeric value
ini_putl stores the numeric value that in the given section and at the given key.
Syntax: int ini putl(const char *Section, const char *Key, long Value,

const char *Filename)

bool put(const std::string& Section, const std::string& Key,
long Value)

Section The name of the section. If this parameter is NULL or an empty string,
the Key is stored outside any section (i.e. above the first section, if the
INI file has any sections).

Key The name of the key. This parameter may not be NULL.
Value The value to write at the key and the section.
Filename The name of the INI file. The filename format and specifications, and

whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: 1/true on success, 0/false on failure.
Notes: This function is unavailable if MININI is configured as a read-only library (page 5).
See also: ini getl, ini puts

ini puts / minIni::put Store a string
ini_puts stores the text parameter that in the given section and at the given key.
Syntax: int ini puts(const char *Section, const char *Key,

const char *Value, const char *Filename)

bool put(const std::string& Section, const std::string& Key,
const std::string& Value)

bool put(const std::string& Section, const std::string& Key,
const char* Value)

Section The name of the section. If this parameter is NULL or an empty string,
the Key is stored outside any section (i.e. above the first section, if the
INI file has any sections).

Key The name of the key. If this parameter is NULL, the function erases all
keys (and their associated values) from the section.

Value The text to write at the key and the section. This string should not con-
tain line breaking characters (such as carriage-return or line-feed char-
acters). If this parameter is NULL, the function erases the key/value
pair.

14 — ini puts / minIni::put

Filename The name of the INI file. The filename format and specifications, and
whether or not this parameter may include a path, depends on the un-
derlying file I/O library.The C++ class uses the filename specified in the
class constructor.

Returns: 1/true on success, 0/false on failure.
Notes: This function can also be used to delete entries or sections, by setting the Key or

Value parameters to NULL.
This function is unavailable if MININI is configured as a read-only library (page 5).

See also: ini gets, ini putl

Example glue files — 15

Example glue files APPENDIX A

• stdio (standard C/C++ library)
On Microsoft Windows or DOS, it is advised to open the INI file in binary mode, despite INI files
being text files. If text mode is unavailable on yor platform, change ”rb” and ”wb” to ”r” and
”w” respectively.

/* map required file I/O types and functions to the standard C library */
#include <stdio.h>
#define INI_FILETYPE FILE*
#define ini_openread(filename,file) ((*(file) = fopen((filename),”rb”)) != NULL)
#define ini_openwrite(filename,file) ((*(file) = fopen((filename),”wb”)) != NULL)
#define ini_openrewrite(filename,file) ((*(file) = fopen((filename),”r+b”)) != NULL)
#define ini_close(file) (fclose(*(file)) == 0)
#define ini_read(buffer,size,file) (fgets((buffer),(size),*(file)) != NULL)
#define ini_write(buffer,file) (fputs((buffer),*(file)) >= 0)
#define ini_rename(source,dest) (rename((source), (dest)) == 0)
#define ini_remove(filename) (remove(filename) == 0)
#define INI_FILEPOS long int
#define ini_tell(file,pos) (*(pos) = ftell(*(file)))
#define ini_seek(file,pos) (fseek(*(file), *(pos), SEEK_SET) == 0)
/* for floating-point support, define additional types and functions */
#define INI_REAL float
#define ini_ftoa(string,value) sprintf((string),”%f”,(value))
#define ini_atof(string) (INI_REAL)strtod((string),NULL)

• CCS FAT library (http://www.ccsinfo.com)
#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */
#ifndef FAT_PIC_C
#error FAT library must be included before this module

#endif
#define const /* keyword not supported by CCS */
#define INI_FILETYPE FILE
#define ini_openread(filename,file) (fatopen((filename), ”r”, (file)) == GOODEC)
#define ini_openwrite(filename,file) (fatopen((filename), ”w”, (file)) == GOODEC)
#define ini_close(file) (fatclose((file)) == 0)
#define ini_read(buffer,size,file) (fatgets((buffer), (size), (file)) != NULL)
#define ini_write(buffer,file) (fatputs((buffer), (file)) == GOODEC)
#define ini_remove(filename) (rm_file((filename)) == 0)
#define INI_FILEPOS fatpos_t
#define ini_tell(file,pos) (fatgetpos((file), (pos)) == 0)
#define ini_seek(file,pos) (fatsetpos((file), (pos)) == 0)
#ifndef INI_READONLY
/* CCS FAT library lacks a rename function, so instead we copy the file to the
* new name and delete the old file
*/
static int ini_rename(char *source, char *dest)
{
FILE fr, fw;
int n;
if (fatopen(source, ”r”, &fr) != GOODEC)

return 0;
if (rm_file(dest) != 0)

return 0;
if (fatopen(dest, ”w”, &fw) != GOODEC)

return 0;
/* With some ”insider knowledge”, we can save some memory: the ”source”

16 — Example glue files

* parameter holds a filename that was built from the ”dest” parameter. It
* was built in a local buffer with the size INI_BUFFERSIZE. We can reuse
* this buffer for copying the file.
*/

while (n=fatread(source, 1, INI_BUFFERSIZE, &fr))
fatwrite(source, 1, n, &fw);

fatclose(&fr);
fatclose(&fw);
/* Now we need to delete the source file. However, we have garbled the buffer
* that held the filename of the source. So we need to build it again.
*/

ini_tempname(source, dest, INI_BUFFERSIZE);
return rm_file(source) == 0;

}
#endif

• EFSL (http://www.efsl.be/)
#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */
#define INI_LINETERM ”\r\n” /* set line termination explicitly */
#include ”efs.h”
extern EmbeddedFileSystem g_efs;
#define INI_FILETYPE EmbeddedFile
#define ini_openread(filename,file) (file_fopen((file), &g_efs.myFs, (char*)(filename), ’r’) \

== 0)
#define ini_openwrite(filename,file) (file_fopen((file), &g_efs.myFs, (char*)(filename), ’w’) \

== 0)
#define ini_close(file) file_fclose(file)
#define ini_read(buffer,size,file) (file_read((file), (size), (buffer)) > 0)
#define ini_write(buffer,file) (file_write((file), strlen(buffer), (char*)(buffer)) > 0)
#define ini_remove(filename) rmfile(&g_efs.myFs, (char*)(filename))
#define INI_FILEPOS euint32
#define ini_tell(file,pos) (*(pos) = (file)->FilePtr))
#define ini_seek(file,pos) file_setpos((file), (*pos))
#if ! defined INI_READONLY
/* EFSL lacks a rename function, so instead we copy the file to the new name
* and delete the old file
*/
static int ini_rename(char *source, const char *dest)
{
EmbeddedFile fr, fw;
int n;
if (file_fopen(&fr, &g_efs.myFs, source, ’r’) != 0)

return 0;
if (rmfile(&g_efs.myFs, (char*)dest) != 0)

return 0;
if (file_fopen(&fw, &g_efs.myFs, (char*)dest, ’w’) != 0)

return 0;
/* With some ”insider knowledge”, we can save some memory: the ”source”
* parameter holds a filename that was built from the ”dest” parameter. It
* was built in buffer and this buffer has the size INI_BUFFERSIZE. We can
* reuse this buffer for copying the file.
*/

while (n=file_read(&fr, INI_BUFFERSIZE, source))
file_write(&fw, n, source);

file_fclose(&fr);
file_fclose(&fw);
/* Now we need to delete the source file. However, we have garbled the buffer
* that held the filename of the source. So we need to build it again.
*/

ini_tempname(source, dest, INI_BUFFERSIZE);
return rmfile(&g_efs.myFs, source) == 0;

}
#endif

Example glue files — 17

• FAT Filing System (http://www.embedded-code.com/)
#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */
#include <mem-ffs.h>
#define INI_FILETYPE FFS_FILE*
#define ini_openread(filename,file) ((*(file) = ffs_fopen((filename),”r”)) != NULL)
#define ini_openwrite(filename,file) ((*(file) = ffs_fopen((filename),”w”)) != NULL)
#define ini_close(file) (ffs_fclose(*(file)) == 0)
#define ini_read(buffer,size,file) (ffs_fgets((buffer),(size),*(file)) != NULL)
#define ini_write(buffer,file) (ffs_fputs((buffer),*(file)) >= 0)
#define ini_rename(source,dest) (ffs_rename((source), (dest)) == 0)
#define ini_remove(filename) (ffs_remove(filename) == 0)
#define INI_FILEPOS long
#define ini_tell(file,pos) (ffs_fgetpos(*(file), (pos)) == 0)
#define ini_seek(file,pos) (ffs_fsetpos(*(file), (pos)) == 0)

• FatFs & Tiny-FatFs (http://elm-chan.org/)
#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */
/* You must set _USE_STRFUNC to 1 or 2 in the include file ff.h (or tff.h)
* to enable the ”string functions” fgets() and fputs().
*/
#include ”ff.h” /* include tff.h for Tiny-FatFs */
#define INI_FILETYPE FIL
#define ini_openread(filename,file) (f_open((file), (filename), \

FA_READ+FA_OPEN_EXISTING) == FR_OK)
#define ini_openwrite(filename,file) (f_open((file), (filename), \

FA_WRITE+FA_CREATE_ALWAYS) == FR_OK)
#define ini_close(file) (f_close(file) == FR_OK)
#define ini_read(buffer,size,file) f_gets((buffer), (size),(file))
#define ini_write(buffer,file) f_puts((buffer), (file))
#define ini_remove(filename) (f_unlink(filename) == FR_OK)
#define INI_FILEPOS DWORD
#define ini_tell(file,pos) (*(pos) = f_tell((file)))
#define ini_seek(file,pos) (f_lseek((file), *(pos)) == FR_OK)
static int ini_rename(TCHAR *source, const TCHAR *dest)
{
/* Function f_rename() does not allow drive letters in the destination file */
char *drive = strchr(dest, ’:’);
drive = (drive == NULL) ? dest : drive + 1;
return (f_rename(source, drive) == FR_OK);

}

• “Memory Disk Drive” file system (Microchip)
#define INI_BUFFERSIZE 256 /* maximum line length, maximum path length */
#include ”MDD File System\fsio.h”
#include <string.h>
#define INI_FILETYPE FSFILE*
#define ini_openread(filename,file) ((*(file) = FSfopen((filename),FS_READ)) != NULL)
#define ini_openwrite(filename,file) ((*(file) = FSfopen((filename),FS_WRITE)) != NULL)
#define ini_openrewrite(filename,file) ((*(file) = fopen((filename),FS_READPLUS)) != NULL)
#define ini_close(file) (FSfclose(*(file)) == 0)
#define ini_write(buffer,file) (FSfwrite((buffer), 1, strlen(buffer), (*file)) > 0)
#define ini_remove(filename) (FSremove((filename)) == 0)
#define INI_FILEPOS long int
#define ini_tell(file,pos) (*(pos) = FSftell(*(file)))
#define ini_seek(file,pos) (FSfseek(*(file), *(pos), SEEK_SET) == 0)
/* Since the Memory Disk Drive file system library reads only blocks of files,
* the function to read a text line does so by ”over-reading” a block of the
* of the maximum size and truncating it behind the end-of-line.

18 — Example glue files

*/
static int ini_read(char *buffer, int size, INI_FILETYPE *file)
{
size_t numread = size;
char *eol;
if ((numread = FSfread(buffer, 1, size, *file)) == 0)

return 0; /* at EOF */
if ((eol = strchr(buffer, ’\n’)) == NULL)

eol = strchr(buffer, ’\r’);
if (eol != NULL) {

/* terminate the buffer */
*++eol = ’\0’;
/* ”unread” the data that was read too much */
FSfseek(*file, - (int)(numread - (size_t)(eol - buffer)), SEEK_CUR);

} /* if */
return 1;

}
#ifndef INI_READONLY
static int ini_rename(const char *source, const char *dest)
{
FSFILE* ftmp = FSfopen((source), FS_READ);
FSrename((dest), ftmp);
return FSfclose(ftmp) == 0;

}
#endif

License — 19

License APPENDIX B

The software product “MININI” is copyright c⃝ 2008–2014 by CompuPhase. MININI is distributed
under the “Apache License” version 2.0 (http://www.apache.org/licenses/), which is reproduced
below, plus an exception clause to explicitly allow static linking.

EXCEPTION TO THE APACHE 2.0 LICENSE

As a special exception to the Apache License 2.0 (and referring to the definitions in Section 1 of this license), you may link, statically

or dynamically, the “Work” to other modules to produce an executable file containing portions of the “Work”, and distribute that

executable file in “Object” form under the terms of your choice, without any of the additional requirements listed in Section 4 of the

Apache License 2.0. This exception applies only to redistributions in “Object” form (not “Source” form) and only if no modifications

have been made to the “Work”.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this

document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common

control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction

or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding

shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation

source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited

to compiled object code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a

copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which

the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the

purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to

the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to

that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or

by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted”

means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf

of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or

otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor

and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a

perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by

such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the

Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or

counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory

patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such

litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without

modifications, and in Source or Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License; and

b. You must cause any modified files to carry prominent notices stating that You changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution

notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

20 — License

d. If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include

a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any

part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative

Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated

by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for

informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works

that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution

notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and condi-

tions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the

Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have

executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the

Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the

NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor

provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or

FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing

the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless

required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to

You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of

this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage,

computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the

possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to

offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this

License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf

of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred

by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

Index — 21

Index
⋄ Names of persons or companies (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter font.

A ASCII, 6
assert, 3

B Binary mode, 4, 15

C C++ class, 8
Case-insensitive (comparisons), 2
CCS Inc., 15
Comments
INI file ~, 1, 2

Compilation
release build, 3

Constructor, 8

D Delete (key or section), 8

E EFSL (file system), 16
Enumeration, 1, 7, 10, 12

F Fat Filing System, 17
FatFs, 17
File system, 15, see also Glue file
Fixed point, 5, 9, 12
Flash memory, 1, 5
Floating point, 5, 9, 12

G GetProfileString, 1, 7
Glue file, 3, 15
GNU GCC, 3
Graf, Joseph J. ~, ii

H Hexadecimal, 11

I INI file comments, 1, 2
ini getbool, 8
ini getf, 9
ini getkey, 9
ini getl, 10
ini gets, 11
ini getsection, 11
ini putf, 12
ini putl, 13
ini puts, 13

K Key enumeration, see Enumeration

L License, 19
Limitations, 1, 3
Line termination, 4, 6
Linux, 3, 6

M MDD (file system), 17
Memory footprint, i, 1, 7
Microchip Technology Inc., 17
minGlue.h, 3, 15
MinGW, 3
minIni::del, 8
minIni::getbool, 8
minIni::getf, 9
minIni::getkey, 9
minIni::getl, 10
minIni::gets, 11
minIni::getsection, 11
minIni::minIni, 8
minIni::put, 12
Multi-tasking, 7
Mutex, 7

N NDEBUG, 3
Nil, Michael de ~, 16

P Petit FatFs, 17

R Rational numbers, 1, 5, 9, 12
Read-only support, 5, 8, 13, 14
Real number, see Rational number
Release build, 3

S Section
INI file ~, 1

Section enumeration, see Enumeration
Semaphore protection, 7
Spaces (characters), 2
std::string, 8
strncasecmp, 3
strnicmp, 3, 7

22 — Index

T tchar.h, 6
Temporary file, 5
Text mode, 4
Thread-safe, 7
Tiny-FatFs, see Petit FatFs

U Unicode, 6
Unix, 3, 6
UTF-8, 6

V Voras, Ivan ~, 5

W White space, 2
Write access, see Read-only support
Write cache, 1, 5
WriteProfileString, 1
wxString, 8
wxWidgets, 8

Y Ysboodt, Lennart ~, 16

	Introduction
	Limitations
	INI file syntax

	Using minIni
	The glue file
	I/O functions
	Buffer size (maximum line length)
	Read-only support
	Rational number support
	Unicode (enable/disable)
	Line termination
	Summary of configuration macros

	Multi-tasking
	Key and section enumeration

	Function reference
	Appendices
	Example glue files
	stdio (standard C/C++ library)
	CCS FAT library (http://www.ccsinfo.com)
	EFSL (http://www.efsl.be/)
	FAT Filing System (http://www.embedded-code.com/)
	FatFs & Tiny-FatFs (http://elm-chan.org/)
	“Memory Disk Drive” file system (Microchip)

	License

	Index

