
Veusz - a scientific plotting package

Jeremy Sanders

Veusz - a scientific plotting package
by Jeremy Sanders

Copyright © 2011

This document is licensed under the GNU General Public License, version 2 or greater. Please see the file
COPYING for details, or see http://www.gnu.org/licenses/gpl-2.0.html.

Table of Contents
1. Introduction ..1

Veusz ...1
Terminology ...1

Widget ...1
Measurements ..3
Settings ..4
Text...4
Axis numbers ...5

Installation..5
The main window ...5
My first plot..6

2. Reading data ...9
Descriptors ...9
Reading CSV files ..11
Reading FITS files..11
Reading other data formats ...11
Manipulating datasets ..12

Using dataset plugins..12
Using expressions to create new datasets ..12
Linking datasets to expressions...13
Splitting data ..13
Defining new constants or functions ..13
Dataset plugins ..13

3. Command line interface ...15
Introduction ...15
Commands ...15

Action ..15
Add ..15
AddCustom ..15
AddImportPath..16
CloneWidget...16
Close ..16
CreateHistogram..16
DatasetPlugin ...16
EnableToolbar...16
Export ..16
ForceUpdate ...17
Get..17
GetChildren ..17
GetClick...17
GetData ...17
GetDataType...18
GetDatasets...18
GPL ..18
ImportFile ...18
ImportFile2D ..18
ImportFileCSV ...19
ImportFilePlugin..19
ImportFITSFile ..19
ImportString ...20
ImportString2D..20
IsClosed...20
List ...20
Load ...20
MoveToPage ...20
ReloadData ...21
Rename..21
Remove..21
ResizeWindow..21
Save..21
Set...21

iii

SetAntiAliasing ..21
SetData ..22
SetDataExpression ...22
SetDataRange ...22
SetData2D ...22
SetData2DExpression..22
SetData2DExpressionXYZ..22
SetData2DXYFunc ...23
SetDataDateTime ...23
SetDataText ...23
SetToReference ...23
SetUpdateInterval..23
SetVerbose...23
StartSecondView..23
TagDatasets...24
To..24
Quit ..24
WaitForClose ..24
Zoom..24

Security ...24
4. Using Veusz from other programs..25

Non-Qt Python programs ..25
PyQt4 programs ..25
Non Python programs..25
C, C++ and Fortran ...26

iv

Chapter 1. Introduction

Veusz
Veusz is a scientific plotting package. It was written as I was dissatisfied with
existing plotting packages as they were either old and unmaintained (like pgplot
and qdp, which does not support postscript fonts), not free (like IDL or Matlab),
or had user interfaces I do not appreciate (like gnuplot).

Veusz is designed to be easily extensible, and is written in Python, a high level
language (in the future it may be necessary to write some parts in another lan-
guage for speed, but this will be kept to an absolute minimum). It is also designed
in an object oriented fashion, where a document is built up by a number of parts
in a hierarchy. The advantage of using Python is that is is easy to allow the user
to script Veusz using Python as a very powerful scripting language. Indeed, the
saved file format is a Python script.

The technologies behind Veusz include PyQt (a very easy to use Python interface
to Qt, which is used for rendering and the graphical user interface, GUI) and
numpy (a package for Python which makes the handling of large datasets easy).

Veusz has two user interfaces: a graphical one which gives the user a relatively
shallow learning curve, and a command line interface. The command line inter-
face is also used by scripting and in the saved file format.

Furthermore, Veusz can be embedded within other Python programs, with plots
in their own windows, or it can be controlled from any other application.

Terminology
Here I define some terminology for future use.

Widget
A document and its graphs are built up from widgets. These widgets can often
by placed within each other, depending on the type of the widget. A widget has
children, those widgets placed within it, and its parent. The widgets have a num-
ber of different settings which modify their behaviour. These include the font to
be used, the line thickness, and whether an axis is logarithmic. In addition they
have actions, which perform some sort of activity on the widget or its children,
like "fit" for a fit widget.

Widgets are specified with a "path", like a file in Unix or Windows. These can be
relative to the current widget (do not start with a slash), or absolute (do not start
with a slash). Examples of paths include, "/page1/graph1/x", "x" and ".".

The widget types include

1. document - representing a complete document. A document can contain
pages. In addition it contains a setting giving the page size for the docu-
ment.

2. page - representing a page in a document. One or more graphs can be
placed on a page, or a grid.

3. graph - defining an actual graph. A graph can be placed on a page or within
a grid. Contained within the graph are its axes and plotters. A graph can
be given a background fill and a border if required. It also has a margin,
which specifies how far away from the edge of its parent widget to plot the
body of the graph.

A graph can contain several axes, at any position on the plot. In addition a
graph can use axes defined in parent widgets, shared with other graphs.

More than one graph can be placed within in a page. The margins can be
adjusted so that they lie within or besides each other.

1

Chapter 1. Introduction

4. grid - containing one or more graphs. A grid plots graphs in a gridlike
fashion. You can specify the number of rows and columns, and the plots
are automatically replotted in the chosen arrangement. A grid can contain
graphs or axes. If an axis is placed in a grid, it can be shared by the graphs
in the grid.

5. axis - giving the scale for plotting data. An axis translates the coordinates
of the data to the screen. An axis can be linear or logarithmic, it can have
fixed endpoints, or can automatically get them from the plotted data. It also
has settings for the axis labels and lines, tick labels, and major and minor
tick marks.

An axis may be "horizontal" or "vertical" and can appear anywhere on its
parent graph or grid.

If an axis appears within a grid, then it can be shared by all the graphs
which are contained within the grid.

6. plotters - types of widgets which plot data or add other things on a graph.
There is no actual plotter widget which can be added, but several types of
plotters listed below. Plotters typically take an axis as a setting, which is
the axis used to plot the data on the graph (default x and y).

a. function - a plotter which plots a function on the graph. Functions
can be functions of x or y (parametric functions are not done yet!),
and are defined in Python expression syntax, which is very close
to most other languages. For example "3*x**2 + 2*x - 4". A num-
ber of functions are available (e.g. sin, cos, tan, exp, log...). Techni-
cally, Veusz imports the numpy package when evaluating, so numpy
functions are available.

As well as the function setting, also settable is the line type to plot
the function, and the number of steps to evaluate the function when
plotting. Filling is supported above/below/left/right of the func-
tion.

b. xy - a plotter which plots scatter, line, or stepped plots. This versatile
plotter takes an x and y dataset, and plots (optional) points, in a cho-
sen marker and colour, connecting them with (optional) lines, and
plotting (optional) error bars. An xy plotter can also plot a stepped
line, allowing histograms to be plotted (note that it doesn’t yet do
the binning of the data).

The settings for the xy widget are the various attibutes for the points,
line and error bars, the datasets to plot, and the axes to plot on.

The xy plotter can plot a label next to each dataset, which is either
the same for each point or taken from a text dataset.

If you wish to leave gaps in a plot, the input value "nan" can be
specified in the numeric dataset.

c. fit - fit a function to data. This plotter is a like the function plotter, but
allows fitting of the function to data. This is achived by clicking on a
"fit" button, or using the "fit" action of the widget. The fitter takes a
function to fit containing the unknowns, e.g. "a*x**2 + b*x + c", and
initial values for the variables (here a, b and c). It then fits the data
(note that at the moment, the fit plotter fits all the data, not just the
data that can be seen on the graph) by minimising the chi-squared.

In order to fit properly, the y data (or x, if fitting as a function of x)
must have a properly defined, preferably symmetric error. If there is
none, Veusz assumes the same fractional error everywhere, or sym-
metrises asymmetric errors.

Note that more work is required in this widget, as if a parameter
is not well defined by the data, the matrix inversion in the fit will
fail. In addition Veusz does not supply estimates for the errors or the
final chi-squared in a machine readable way.

2

Chapter 1. Introduction

If the fitting parameters vary significantly from 1, then it is worth
"normalizing" them by adding in a factor in the fit equation to bring
them to of the order of 1.

d. bar - a bar chart which plots sets of data as horizontal or vertical
bars. Multiple datasets are supported. In "grouped" mode the bars
are placed side-by-side for each dataset. In "stacked" mode the bars
are placed on top of each other (in the appropriate direction accord-
ing to the sign of the dataset). Bars are placed on coordinates given,
or in integer values from 1 upward if none are given. Error bars are
plotted for each of the datasets.

Different fill styles can be given for each dataset given. A separate
key value can be given for each dataset.

e. key - a box which describes the data plotted. If a key is added to a
plot, the key looks for "key" settings of the other data plotted within
a graph. If there any it builds up a box containing the symbol and
line for the plotter, and the text in the "key" setting of the widget.
This allows a key to be very easily added to a plot.

The key may be placed in any of the corners of the plot, in the centre,
or manually placed. Depending on the ordering of the widgets, the
key will be placed behind or on top of the widget. The key can be
filled and surrounded by a box, or not filled or surrounded.

f. label - a text label places on a graph. The alignment can be adjusted
and the font changed. The position of the label can be specified in
fractional terms of the current graph, or using axis coordinates.

g. rect, ellipse - these draw a rectangle or ellipse, respectively, of size
and rotation given. These widgets can be placed directly on the page
or on a graph. The centre can be given in axis coordinates or frac-
tional coordinates.

h. imagefile - draw an external graphs file on the graph or page, with
size and rotation given. The centre can be given in axis coordinates
or fractional coordinates.

i. line - draw a line with optional arrowheads on the graph or page.
One end can be given in axis coordinates or fractional coordinates.

j. contour - plot contours of a 2D dataset on the graph. Contours are
automatically calculated between the minimum and maximum val-
ues of the graph or chosen manually. The line style of the contours
can be chosen individually and the region between contours can be
filled with shading or color.

2D datasets currently consist of a regular grid of values between
minimum and maximum positions in x and y. They can be con-
structed from three 1D datasets of x, y and z if they form a regular x,
y grid.

k. image - plot a 2D dataset as a colored image. Different color schemes
can be chosen. The scaling between the values and the image can be
specified as linear, logarithmic, square-root or square.

l. polygon - plot x and y points from datasets as a polygon. The poly-
gon can be placed directly on the page or within a graph. Coordi-
nates are either plotted using the axis or as fractions of the width
and height of the containing widget.

m. boxplot - plot distribution of points in a dataset.

n. polar - plot polar data or functions. This is a non-orthogonal plot
and is placed directly on the page rather than in a graph.

o. ternary - plot data of three variables which add up to 100 per
cent.This is a non-orthogonal plot and is placed directly on the page
rather than in a graph.

3

Chapter 1. Introduction

Measurements
Distances, widths and lengths in Veusz can be specified in a number of differ-
ent ways. These include absolute distances specified in physical units, e.g. 1cm,
0.05m, 10mm, 5in and 10pt, and relative units, which are relative to the largest
dimension of the page, including 5%, 1/20, 0.05.

Settings
The various settings of the widgets come in a number of types, including integers
(e.g. 10), floats (e.g. 3.14), text ("hi there!"), distances (see above), options ("hori-
zontal" or "vertical" for axes).

Veusz performs type checks on these parameters. If they are in the wrong format
the control to edit the setting will turn red. In the command line, a TypeError
exception is thrown.

In the GUI, the current page is replotted if a setting is changed when enter is
pressed or the user moves to another setting.

The settings are split up into formatting settings, controlling the appearance of
the plot, or properties, controlling what is plotted and how it is plotted.

Default settings, including the default font and line style, and the default settings
for any graph widget, can be modified in the "Default styles" dialog box under the
"Edit" menu. Default settings are set on a per-document basis, but can be saved
into a separate file and loaded. A default default settings file can be given to use
for new documents (set in the preferences dialog).

Text
Veusz understands a limited set of LaTeX-like formatting for text. There are some
differences (for example, "10^23" puts the 2 and 3 into superscript), but it is fairly
similar. You should also leave out the dollar signs. Veusz supports superscripts
("^"), subscripts ("_"), brackets for grouping attributes are "{" and "}".

Supported LaTeX symbols include: \AA, \Alpha, \Beta, \Chi, \Delta, \Epsilon,
\Eta, \Gamma, \Iota, \Kappa, \Lambda, \Mu, \Nu, \Omega, \Omicron, \Phi,
\Pi, \Psi, \Rho, \Sigma, \Tau, \Theta, \Upsilon, \Xi, \Zeta, \alpha, \approx,
\ast, \asymp, \beta, \bowtie, \bullet, \cap, \chi, \circ, \cup, \dagger, \dashv,
\ddagger, \deg, \delta, \diamond, \divide, \doteq, \downarrow, \epsilon,
\equiv, \eta, \gamma, \ge, \gg, \in, \infty, \int, \iota, \kappa, \lambda, \le,
\leftarrow, \lhd, \ll, \models, \mp, \mu, \neq, \ni, \nu, \odot, \omega,
\omicron, \ominus, \oplus, \oslash, \otimes, \parallel, \perp, \phi, \pi, \pm,
\prec, \preceq, \propto, \psi, \rhd, \rho, \rightarrow, \sigma, \sim, \simeq,
\sqrt, \sqsubset, \sqsubseteq, \sqsupset, \sqsupseteq, \star, \stigma, \subset,
\subseteq, \succ, \succeq, \supset, \supseteq, \tau, \theta, \times, \umid,
\unlhd, \unrhd, \uparrow, \uplus, \upsilon, \vdash, \vee, \wedge, \xi, \zeta.
Please request additional characters if they are required (and exist in the unicode
character set). Special symbols can be included directly from a character map.

Other LaTeX commands are supported. "\\" breaks a line. This can be used for
simple tables. For example "{a\\b} {c\\d}" shows "a c" over "b d". The command
"\frac{a}{b}" shows a vertical fraction a/b.

Also supported are commands to change font. The command "\font{name}{text}"
changes the font text is written in to name. This may be useful if a symbol is miss-
ing from the current font, e.g. "\font{symbol}{g}" should produce a gamma. You
can increase, decrease, or set the size of the font with "\size{+2}{text}", "\size{-
2}{text}", or "\size{20}{text}". Numbers are in points.

Various font attributes can be changed: for example, "\italic{some italic text}" (or
use "\textit" or "\emph"), "\bold{some bold text}" (or use "\textbf") and "\under-
line{some underlined text}".

Example text could include "Area / \pi (10^{-23} cm^{-2})", or "\pi\bold{g}".

4

Chapter 1. Introduction

Veusz plots these symbols with Qt’s unicode support. If your current font does
not contain these symbols then you may get messy results. If you find this is
the case, I highly recommend you to down load Microsoft’s Corefonts (see
http://corefonts.sourceforge.net/).

Axis numbers
The way numbers are shown on axes is chosen automatically. For standard nu-
merical axes, values are shown with the "%Vg" formatting (see below). For date
axes, an appropriate date formatting is used so that the interval shown is correct.
A format can be given for an axis in the axis number formatting panel can be
given to explicitly choose a format. Some examples are given in the drop down
axis menu. Hold the mouse over the example for detail.

C-style number formatting is used with a few Veusz specific extensions. Text
can be mixed with format specifiers, which start with a "%" sign. Examples of
C-style formatting include: "%.2f" (decimal number with two decimal places,
e.g. 2.01), "%.3e" (scientific formatting with three decimal places, e.g. 2.123e-02),
"%g" (general formatting, switching between "%f" and "%e" as appropriate). See
http://opengroup.org/onlinepubs/007908799/xsh/fprintf.html for details.

Veusz extensions include "%Ve", which is like "%e" except it displays scientific
notation as written, e.g. 1.2x10^23, rather than 1.2e+23. "%Vg" switches between
standard numbers and Veusz scientific notation for large and small numbers.
"%VE" using engineering SI suffixes to represent large or small numbers (e.g.
1000 is 1k).

Veusz allows dates and times to be formatted using "%VDX"
where "X" is one of the formatting characters for strftime (see
http://opengroup.org/onlinepubs/007908799/xsh/strftime.html for details).
These include "a" for an abbreviated weekday name, "A" for full weekday name,
"b" for abbreviated month name, "B" for full month name, "c" date and time
representaiton, "d" day of month 01..31, "H" hour as 00..23, "I" hour as 01..12, "j"
as day of year 001..366, "m" as month 01..12, "M" minute as 00..59, "p" AM/PM,
"S" second 00..61, "U" week number of year 00..53 (Sunday as first day of week),
"w" weekday as decimal number 0..6, "W" week number of year (Monday as first
day of week), "x" date representation, "X" time representation, "y" year without
century 00..99 and "Y" year. "%VDVS" is a special Veusz addon format which
shows seconds and fractions of seconds (e.g. 12.2).

Installation
Please look at the Installation notes (INSTALL) for details on installing Veusz.

The main window
You should see the main window when you run Veusz (you can just type the
veusz command in Unix).

5

Chapter 1. Introduction

The Veusz window is split into several sections. At the top is the menu bar and
tool bar. These work in the usual way to other applications. Sometimes options
are disabled (greyed out) if they do not make sense to be used. If you hold your
mouse over a button for a few seconds, you will usually get an explanation for
what it does called a "tool tip".

Below the main toolbar is a second toolbar for constructing the graph by adding
widgets (on the left), and some editing buttons. The add widget buttons add
the request widget to the currently selected widget in the selection window. The
widgets are arranged in a tree-like structure.

Below these toolbars and to the right is the plot window. This is where the current
page of the current document is shown. You can adjust the size of the plot on the
screen (the zoom factor) using the "View" menu or the zoom tool bar button (the
magnifying glass). Initially you will not see a plot in the plot window, but you will
see the Veusz logo. At the moment you cannot do much else with the window. In
the future you will be able to click on items in the plot to modify them.

To the left of the plot window is the selection window, and the properties and for-
matting windows. The properties window lets you edit various aspects of the se-
lected widget (such as the minimum and maximum values on an axis). Changing
these values should update the plot. The formatting lets you modify the appear-
ance of the selected widget. There are a series of tabs for choosing what aspect to
modify.

The various windows can be "dragged" from the main window to "float" by them-
selves on the screen.

To the bottom of the window is the console. This window is not shown by
default, but can be enabled in the View menu. The console is a Veusz and Python
command line console. To read about the commands available see Commands.
As this is a Python console, you can enter mathematical expressions (e.g.
"1+2.0*cos(pi/4)") here and they will be evaluated when you press Enter. The
usual special functions and the operators are supported. You can also assign
results to variables (e.g. "a=1+2") for use later. The console also supports
command history like many Unix shells. Press the up and down cursor keys to
browse through the history. Command line completion is not available yet!

In recent versions there also exists a dataset browsing window, by default to the
right of the screen. This window allows you to view the datasets currently loaded,
their dimensions and type. Hovering a mouse over the size of the dataset will
give you a preview of the data.

My first plot
After opening Veusz, on the left of the main window, you will see a Document,
containing a Page, which contains a Graph with its axes. The Graph is selected in

6

Chapter 1. Introduction

the selection window. The toolbar above adds a new widget to the selected wid-
get. If a widget cannot be added to a selected widget it is disabled. On opening
a new document Veusz automatically adds a new Page and Graph (with axes) to
the document.

You will see something like this:

Select the x axis which has been added to the document (click on "x" in the se-
lection window). In the properties window you will see a variety of different
properties you can modify. For instance you can enter a label for the axis by writ-
ing "Area (cm^{2})" in the box next to label and pressing enter. Veusz supports
text in LaTeX-like form (without the dollar signs). Other important parameters is
the "log" switch which switches between linear and logarithmic axes, and "min"
and "max" which allow the user to specify the minimum and maximum values
on the axes.

The formatting dialog lets you edit various aspects of the graph appearance. For
instance the "Line" tab allows you to edit the line of the axis. Click on "Line", then
you can then modify its colour. Enter "green" instead of "black" and press enter.
Try making the axis label bold.

Now you can try plotting a function on the graph. If the graph, or its children
are selected, you will then be able to click the "function" button at the top (a red
curve on a graph). You will see a straight line (y=x) added to the plot. If you select
"function1", you will be able to edit the functional form plotted and the style of
its line. Change the function to "x**2" (x-squared).

We will now try plotting data on the graph. Go to your favourite text editor and
save the following data as test.dat:

1 0.1 -0.12 1.1 0.1
2.05 0.12 -0.14 4.08 0.12
2.98 0.08 -0.1 2.9 0.11
4.02 0.04 -0.1 15.3 1.0

The first three columns are the x data to plot plus its asymmetric errors. The final
two columns are the y data plus its symmetric errors. In Veusz, go to the "Data"
menu and select "Import". Type the filename into the filename box, or use the
"Browse..." button to search for the file. You will see a preview of the data pop
up in the box below. Enter "x,+,- y,+-" into the descriptors edit box (note that
commas and spaces in the descriptor are almost interchangeable in Veusz 1.6 or
newer). This describes the format of the data which describes dataset "x" plus its
asymmetric errors, and "y" with its symmetric errors. If you now click "Import",
you will see it has imported datasets "x" and "y".

To plot the data you should now click on "graph1" in the tree window. You are
now able to click on the "xy" button (which looks like points plotted on a graph).

7

Chapter 1. Introduction

You will see your data plotted on the graph. Veusz plots datasets "x" and "y" by
default, but you can change these in the properties of the "xy" plotter.

You are able to choose from a variety of markers to plot. You can remove the plot
line by choosing the "Plot Line" subsetting, and clicking on the "hide" option. You
can change the colour of the marker by going to the "Marker Fill" subsetting, and
entering a new colour (e.g. red), into the colour property.

8

Chapter 2. Reading data

Currently Veusz supports reading data from a text file, FITS format files, CSV
files, QDP files, binary files and NPY/NPZ files. Reading data is supported using
the "Data, Import" dialog, or using the ImportFile and ImportString commands
which read data from files or an existing Python string (allowing data to be em-
bedded in a Python script). In addition, the user can load or write plugins in
Python which load data into Veusz in an arbitrary format. At the moment QDP,
binary and NPY/NPZ files are supported with this method.

CSV files are intuitive to use and are described below.

In addition data may also be read in from FITS files if the PyFITS Python module
is installed. FITS is a widespread astronomical data format. FITS files are read
using the FITS tab on the import dialog or using the ImportFITSFile command.

Two dimensional data are also supported using the 2D tab on the Import dialog
box, ImportFile2D and ImportString2D commands.

Descriptors
The "Data, Import" dialog box, ImportFile and ImportString commands use a
"Descriptor", or list of dataset names, to describe how the data are formatted in
the import file. The descriptor at its simplest is a list of the names of the datasets
to import (which are columns in the file). Additionally modifiers are added if
error bars are also read in. Examples of descriptors are below:

1. x y two columns are present in the file, they will be read in as datasets "x"
and "y".

2. x,+- y,+,- or x +- y + - two datasets are in the file. Dataset "x" consists of the
first two columns. The first column are the values and the second are the
symmetric errors. "y" consists of three columns (note the comma between
+ and -). The first column are the values, the second positive asymmetric
errors, and the third negative asymmetric errors.

Suppose the input file contains:

1.0 0.3 2 0.1 -0.2
1.5 0.2 2.3 2e-2 -0.3E0
2.19 0.02 5 0.1 -0.1

Then x will contain "1+-0.3", "1.5+-0.2", "2.19+-0.02". y will contain "2 +0.1
-0.2", "2.3 +0.02 -0.3", "5 +0.1 -0.1".

9

Chapter 2. Reading data

3. x[1:2] y[:] the first column is the data "x_1", the second "x_2". Subsequent
columns are read as "y[1]" to "y[n]".

4. y[:]+- read each pair of columns as a dataset and its symmetric error, calling
them "y[1]" to "y[n]".

5. foo„+- read the first column as the foo dataset, skip a column, and read the
third column as its symmetric error.

The dataset names given here x and y, are just representative. Dataset names can
contain virtually any character, even unicode characters. If the name contains
non alpha-numeric characters (characters outside of A-Z, a-z and 0-9), then the
dataset name should be contained within back-tick characters. An example de-
scriptor is ‘length data (m)‘,+- ‘speed (mps)‘,+,-, for two datasets with spaces
and brackets in their names.

The special names +-, + or - specify that the datasets before are followed by
columns containing symmetric, positive or negative errors. The signs on positive
or negative errors are automatically set to be correct.

If a descriptor is left blank, Veusz will automatically create dataset names. If the
prefix and suffix settings are blank, they are assigned names col1, col2, etc. If
prefix and suffix are not blank, the datasets are called prefix+number+suffix.

When reading in data, Veusz treats any whitespace as separating columns. The
columns do not actually need to be in columns! Furthermore a "\" symbol can be
placed at the end of a line to mark a continuation. Veusz will read the next line as
if it were placed at the end of the current line. In addition comments and blank
lines are ignored. Comments start with a "#", ";", "!" or "%", and continue until the
end of the line. The special value "nan" can be used to specify a break in a dataset.

Veusz supports reading in other types of data. The type of data can be added
in round brackets after the name. Veusz will try to guess the type of data based
on the first value, so you should specify it if there is any form of ambiguity (e.g.
is 3 text or a number). Supported types are numbers (use numeric in brackets)
and text (use text in brackets). An example descriptor would be "x(numeric) +-
y(numeric) + - label(text)" for an x dataset followed by its symmetric errors, a y
dataset followed by two columns of asymmetric errors, and a final column of text
for the label dataset.

A text column does not need quotation unless it contains space characters or es-
cape characters. However make sure you deselect the "ignore text" option in the
import dialog. This ignores lines of text to ease the import of data from other ap-
plications. Quotation marks are recommended around text if you wish to avoid
ambiguity. Text is quoted according to the Python rules for text. Double or single
quotation marks can be used, e.g. "A ’test’", ’A second "test"’. Quotes can be es-
caped by prefixing them with a backslash, e.g. "A new \"test\"". If the data are
generated from a Python script, the repr function provides the text in a suitable
form.

Dates and times are also supported with the syntax "dataset(date)". Dates must
be in ISO format YYYY-MM-DD. Times are in 24 hour format hh:mm:ss.ss.
Dates with times are written YYYY-MM-DDThh:mm:ss.ss (this is a standard ISO
format, see http://www.w3.org/TR/NOTE-datetime). Dates are stored within
Veusz as a number which is the number of seconds since the start of January 1st
2009. Veusz also supports dates and times in the local format, though take note
that the same file and data may not work on a system in a different location.

Data may be optionally split into "blocks" of data separated by blank lines (or
the word "no" on a line, for obscure reasons). The name of each read in dataset
has an underscore and the number of the block (starting from 1) added. This is
specified by clicking the blocks checkbox in the import dialog, or by using the
useblocks=True option on the ImportFile or ImportString commands.

Instead of specifying the descriptor in the import dialog, the descriptor can be
placed in the data file using a descriptor statement on a separate line, consisting
of "descriptor" followed by the descriptor. Multiple descriptors can be placed in
a single file, for example:

here is one section

10

Chapter 2. Reading data

descriptor x,+- y,+,-
1 0.5 2 0.1 -0.1
2 0.3 4 0.2 -0.1

my next block
descriptor alpha beta gamma
1 2 3
4 5 6
7 8 9

etc...

If data are imported from a file, Veusz will normally save the data in its saved
document format. If the data are changing, quite often one wants to reread the
data from the input file. This can be achieved using the "linked=True" option on
the ImportFile command, or by clicking the "Link" checkbox in the import dialog.

Reading CSV files
CVS (comma separated variable) files are often written from other programs,
such as spreadsheets, including Excel and Gnumeric. Veusz supports reading
from these files.

In the import dialog choose "CSV", then choose a filename to import from. In the
CSV file the user should place the data in either rows or columns. Veusz will use
a name above a column or to the left of a row to specify what the dataset name
should be. The user can use new names further down in columns or right in rows
to specify a different dataset name. Names do not have to be used, and Veusz will
assign default "col" and "row" names if not given. You can also specify a prefix
which is prepended to each dataset name read from the file.

To specify symmetric errors for a column, put "+-" as the dataset name in the next
column or row. Asymmetric errors can be stated with "+" and "-" in the columns.

The data can be linked with the CSV file so that it can be updated when the file
changes. See the example CSV import for details.

The data type in CSV files are automatically detected unless specified. The data
type can be given in brackets after the column name, e.g. "name (text)", where
the data type is "date", "numeric" or "text". Explicit data types are needed if the
data look like a different data type (e.g. a text item of "1.23"). The date format
in CSV files can be specified in the import dialog box - see the examples given.
In addition CSV files support numbers in European format (e.g. 2,34 rather than
2.34), depending on the setting in the dialog box.

Reading FITS files
1D or 2D data can be read from FITS files. 1D data, with optional errors bars, can
be read from table extensions, and 2D data from image or primary extensions.

Reading other data formats
As mentioned above, a user may write some Python code to read a data file
or set of data files. To write a plugin which is incorportated into Veusz, see
http://barmag.net/veusz-wiki/ImportPlugins

You can also include Python code in an input file to read data, which we describe
here. Suppose an input file "in.dat" contains the following data:

1 2
2 4
3 9
4 16

11

Chapter 2. Reading data

Of course this data could be read using the ImportFile command. However, you
could also read it with the following Veusz script (which could be saved to a file
and loaded with execfile or Load. The script also places symmetric errors of 0.1
on the x dataset.

x = []
y = []
for line in open("in.dat"):

parts = [float(i) for i in line.split()]
x.append(parts[0])
y.append(parts[1])

SetData(’x’, x, symerr=0.1)
SetData(’y’, y)

Manipulating datasets
Imported datasets can easily be modified in the Edit data dialog box, by clicking
on a value and entering a new one. What is probably more interesting is using the
Create dialog box to make new datasets from scratch or based on other datasets.

New datasets can be made by entering a name, and choosing whether to make a
dataset consisting of a single value or over a range, from expressions based on a
parametric expression, or from expressions based on existing datasets.

Using dataset plugins
Dataset plugins can be used to perform arbitrary manipulation of datasets. Veusz
includes several plugins for mathematical operation of data and other dataset
manipulations, such as concatenation or splitting. If you wish to write your own
plugins look at http://barmag.net/veusz-wiki/DatasetPlugins.

Using expressions to create new datasets
For instance, if the user has already imported dataset d, then they can create d2
which consists of d**2. Expressions are in Python numpy syntax and can include
the usual mathematical functions.

Expressions for error bars can also be given. By appending _data, _serr, _perr
or _nerr to the name of the dataset in the expression, the user can base their
expression on particular parts of the given dataset (the main data, symmetric

12

Chapter 2. Reading data

errors, positive errors or negative errors). Otherwise the program uses the same
parts as is currently being specified.

If a dataset name contains non alphanumeric characters, its name should be
quoted in the expression in back-tick characters, e.g. ‘length (cm)‘*2.

Linking datasets to expressions
A particularly useful feature is to be able to link a dataset to an expression, so if
the expression changes the dataset changes with it, like in a spreadsheet.

Splitting data
Data can also be chopped in this method, for example using the expression
x[10:20], which makes a dataset based on the 11th to 20th item in the x dataset
(the ranges are Python syntax, and are zero-based). Negative indices count
backwards from the end of the dataset. Data can be skipped using expressions
such as data[::2], which skips every other element

Defining new constants or functions
User defined constants or functions can be defined in the "Custom definitions"
dialog box under the edit menu. Functions can also be imported from external
python modules.

Custom definitions are defined on a per-document basis, but can be saved or
loaded into a file. A default custom definitions file can be set in the preferences
dialog box.

Dataset plugins
In addition to creating datasets based on expressions, a variety of dataset plugins
exist, which make certain operations on datasets much more convenient. See the
Data, Operations menu for a list of the default plugins. The user can easily create
new plugins. See http://barmag.net/veusz-wiki/DatasetPlugins for details.

13

Chapter 2. Reading data

14

Chapter 3. Command line interface

Introduction
An alternative way to control Veusz is via its command line interface. As Veusz is
a a Python application it uses Python as its scripting language. Therefore you can
freely mix Veusz and Python commands on the command line. Veusz can also
read in Python scripts from files (see the Load command).

When commands are entered in the command prompt in the Veusz window,
Veusz supports a simplified command syntax, where brackets following com-
mands names, and commas, can replaced by spaces in Veusz commands (not
Python commands). For example, Add(’graph’, name=’foo’), may be entered as
Add ’graph’ name=’foo’.

The numpy package is already imported into the command line interface (as "*"),
so you do not need to import it first.

The command prompt supports history (use the up and down cursor keys to
recall previous commands).

Most of the commands listed below can be used in the in-program command
line interface, using the embedding interface or using veusz_listen. Commands
specific to particular modes are documented as such.

Veusz also includes a new object-oriented version of the interface, which is doc-
umented at http://barmag.net/veusz-wiki/EmbeddingPython.

Commands
We list the allowed set of commands below

Action
Action(’actionname’, componentpath=’.’)

Initiates the specified action on the widget (component) given the action name.
Actions perform certain automated routines. These include "fit" on a fit widget,
and "zeroMargins" on grids.

Add
Add(’widgettype’, name=’nameforwidget’, autoadd=True, optionalargs)

The Add command adds a graph into the current widget (See the To command
to change the current position).

The first argument is the type of widget to add. These include "graph", "page",
"axis", "xy" and "grid". name is the name of the new widget (if not given, it will
be generated from the type of the widget plus a number). The autoadd parameter
if set, constructs the default sub-widgets this widget has (for example, axes in a
graph).

Optionally, default values for the graph settings may be given, for example
Add(’axis’, name=’y’, direction=’vertical’).

Subsettings may be set by using double underscores, for example Add(’xy’,
MarkerFill__color=’red’, ErrorBarLine__hide=True).

Returns: Name of widget added.

AddCustom
AddCustom(type, name, value)

15

Chapter 3. Command line interface

Add a custom definition for evaluation of expressions. This can define a constant
(can be in terms of other constants), a function of 1 or more variables, or a function
imported from an external python module.

ctype is "constant", "function" or "import".

name is name of constant, or "function(x, y, ...)" or module name.

val is definition for constant or function (both are _strings_), or is a list of symbols
for a module (comma separated items in a string).

If mode is ’appendalways’, the custom value is appended to the end of the list
even if there is one with the same name. If mode is ’replace’, it replaces any ex-
isting definition in the same place in the list or is appended otherwise. If mode is
’append’, then an existing definition is deleted, and the new one appended to the
end.

AddImportPath
AddImportPath(directory)

Add a directory to the list of directories to try to import data from.

CloneWidget
CloneWidget(widget, newparent, newname=None)

Clone the widget given, placing the copy in newparent and the name given. new-
name is an optional new name to give it Returns new widget path.

Close
Close()

Closes the plotwindow. This is only supported in embedded mode.

CreateHistogram
CreateHistogram(inexpr, outbinsds, outvalsds, binparams=None,
binmanual=None, method=’counts’, cumulative = ’none’, errors=False)

Histogram an input expression. inexpr is input expression. outbinds is the name
of the dataset to create giving bin positions. outvalsds is name of dataset for bin
values. binparams is None or (numbins, minval, maxval, islogbins). binmanual
is None or a list of bin values. method is ’counts’, ’density’, or ’fractions’. cumu-
lative is to calculate cumulative distributions which is ’none’, ’smalltolarge’ or
’largetosmall’. errors is to calculate Poisson error bars.

DatasetPlugin
DatasetPlugin(pluginname, fields, datasetnames={})>

Use a dataset plugin. pluginname: name of plugin to use fields: dict of input
values to plugin datasetnames: dict mapping old names to new names of datasets
if they are renamed. The new name None means dataset is deleted

EnableToolbar
EnableToolbar(enable=True)

Enable/disable the zooming toolbar in the plotwindow. This command is only
supported in embedded mode or from veusz_listen.

16

Chapter 3. Command line interface

Export
Export(filename, color=True, page=0 dpi=100, antialias=True, quality=85, back-
color=’#ffffff00’, pdfdpi=150, svgtextastext=False)

Export the page given to the filename given. The filename must end with the
correct extension to get the right sort of output file. Currrenly supported exten-
sions are ’.eps’, ’.pdf’, ’.svg’, ’.jpg’, ’.jpeg’, ’.bmp’ and ’.png’. If color is True, then
the output is in colour, else greyscale. page is the page number of the document
to export (starting from 0 for the first page!). dpi is the number of dots per inch
for bitmap output files. antialias - antialiases output if True. quality is a quality
parameter for jpeg output. backcolor is the background color for bitmap files,
which is a name or a #RRGGBBAA value (red, green, blue, alpha). pdfdpi is the
dpi to use when exporting EPS or PDF files. svgtextastext says whether to export
SVG text as text, rather than curves.

ForceUpdate
ForceUpdate()

Force the window to be updated to reflect the current state of the document.
Often used when periodic updates have been disabled (see SetUpdateInterval).
This command is only supported in embedded mode or from veusz_listen.

Get
Get(’settingpath’)

Returns: The value of the setting given by the path.

>>> Get(’/page1/graph1/x/min’)
’Auto’

GetChildren
GetChildren(where=’.’)

Returns: The names of the widgets which are children of the path given

GetClick
GetClick()

Waits for the user to click on a graph and returns the position of the click on
appropriate axes. Command only works in embedded mode.

Returns: A list containing tuples of the form (axispath, val) for each axis for which
the click was in range. The value is the value on the axis for the click.

GetData
GetData(name)

Returns: For a 1D dataset, a tuple containing the dataset with the name given.
The value is (data, symerr, negerr, poserr), with each a numpy array of the same
size or None. data are the values of the dataset, symerr are the symmetric errors
(if set), negerr and poserr and negative and positive asymmetric errors (if set). If
a text dataset, return a list of text elements. If the dataset is a date-time dataset,
return a list of Python datetime objects. If the dataset is a 2D dataset return the
tuple (data, rangex, rangey), where data is a 2D numpy array and rangex/y are
tuples giving the range of the x and y coordinates of the data.

17

Chapter 3. Command line interface

data = GetData(’x’)
SetData(’x’, data[0]*0.1, *data[1:])

GetDataType
GetDataType(name)

Get type of dataset with name given. Returns ’1d’ for a 1d dataset, ’2d’ for a 2d
dataset, ’text’ for a text dataset and ’datetime’ for a datetime dataset.

GetDatasets
GetDatasets()

Returns: The names of the datasets in the current document.

GPL
GPL()

Print out the GNU Public Licence, which Veusz is licenced under.

ImportFile
ImportFile(’filename’, ’descriptor’, linked=False, prefix=”, suffix=”,
encoding=’utf_8’)

Imports data from a file. The arguments are the filename to load data from and
the descriptor.

The format of the descriptor is a list of variable names representing the columns
of the data. For more information see Descriptors.

If the linked parameter is set to True, if the document is saved, the data imported
will not be saved with the document, but will be reread from the filename given
the next time the document is opened. The linked parameter is optional.

If prefix and/or suffix are set, then the prefix and suffix are added to each dataset
name.

Returns: A tuple containing a list of the imported datasets and the number of
conversions which failed for a dataset.

Changed in version 0.5: A tuple is returned rather than just the number of im-
ported variables.

ImportFile2D
ImportFile2D(’filename’, datasets, xrange=(a,b), yrange=(c,d),
invertrows=True/False, invertcols=True/False, transpose=True/False, prefix=”,
suffix=”, linked=False, encoding=’utf8’)

Imports two-dimensional data from a file. The required arguments are the file-
name to load data from and the dataset name, or a list of names to use.

filename is a string which contains the filename to use. datasets is either a string
(for a single dataset), or a list of strings (for multiple datasets).

The xrange parameter is a tuple which contains the range of the X-axis along the
two-dimensional dataset, for example (-1., 1.) represents an inclusive range of -1
to 1. The yrange parameter specifies the range of the Y-axis similarly. If they are
not specified, (0, N) is the default, where N is the number of datapoints along a
particular axis.

invertrows and invertcols if set to True, invert the rows and columns respectively
after they are read by Veusz. transpose swaps the rows and columns.

18

Chapter 3. Command line interface

If prefix and/or suffix are set, they are prepended or appended to imported
dataset names.

If the linked parameter is True, then the datasets are linked to the imported file,
and are not saved within a saved document.

The file format this command accepts is a two-dimensional matrix of numbers,
with the columns separated by spaces or tabs, and the rows separated by new
lines. The X-coordinate is taken to be in the direction of the columns. Comments
are supported (use "#", "!" or "%"), as are continuation characters ("\"). Separate
datasets are deliminated by using blank lines.

In addition to the matrix of numbers, the various optional parameters this com-
mand takes can also be specified in the data file. These commands should be
given on separate lines before the matrix of numbers. They are:

1. xrange A B

2. yrange C D

3. invertrows

4. invertcols

5. transpose

ImportFileCSV
ImportFileCSV(’filename’, readrows=False, dsprefix=”, dssuffix=”,
linked=False, encoding=’utf_8’)

This command imports data from a CSV format file. Data are read from the file
using the dataset names given at the top of the files in columns. Please see the
reading data section of this manual for more information. dsprefix is prepended
to each dataset name and dssuffix is added (the prefix option is deprecated and
also addeds an underscore to the dataset name). linked specifies whether the data
will be linked to the file.

ImportFilePlugin
ImportFilePlugin(’pluginname’, ’filename’, **pluginargs, linked=False, encod-
ing=’utf_8’, prefix=”, suffix=”)

Import data from file using import plugin ’pluginname’. The arguments to the
plugin are given, plus optionally a text encoding, and prefix and suffix to prepend
or append to dataset names.

ImportFITSFile
ImportFITSFile(datasetname, filename, hdu, datacol=’A’, symerrcol=’B’, poser-
rcol=’C’, negerrcol=’D’, linked=True/False)

This command does a simple import from a FITS file. The FITS format is used
within the astronomical community to transport binary data. For a more power-
ful FITS interface, you can use PyFITS within your scripts.

The datasetname is the name of the dataset to import, the filename is the name
of the FITS file to import from. The hdu parameter specifies the HDU to import
data from (numerical or a name).

If the HDU specified is a primary HDU or image extension, then a
two-dimensional dataset is loaded from the file. The optional parameters (other
than linked) are ignored. Any WCS information within the HDU are used to
provide a suitable xrange and yrange.

If the HDU is a table, then the datacol parameter must be specified (and option-
ally symerrcol, poserrcol and negerrcol). The dataset is read in from the named
column in the table. Any errors are read in from the other specified columns.

19

Chapter 3. Command line interface

If linked is True, then the dataset is not saved with a saved document, but is
reread from the data file each time the document is loaded.

ImportString
ImportString(’descriptor’, ’data’)

Like, ImportFile, but loads the data from the specfied string rather than a file.
This allows data to be easily embedded within a document. The data string is
usually a multi-line Python string.

Returns: A tuple containing a list of the imported datasets and the number of
conversions which failed for a dataset.

Changed in version 0.5: A tuple is returned rather than just the number of im-
ported variables.

ImportString(’x y’, ”’
1 2
2 5
3 10
”’)

ImportString2D
ImportString2D(datasets, string)

Imports a two-dimensional dataset from the string given. This is similar to the
ImportFile2D command, with the same dataset format within the string. This
command, however, does not currently take any optional parameters. The var-
ious controlling parameters can be set within the string. See the ImportFile2D
section for details.

IsClosed
IsClosed()

Returns a boolean value telling the caller whether the plotting window has been
closed.

Note: this command is only supported in the embedding interface.

List
List(where=’.’)

List the widgets which are contained within the widget with the path given, the
type of widgets, and a brief description.

Load
Load(’filename.vsz’)

Loads the veusz script file given. The script file can be any Python code. The code
is executed using the Veusz interpreter.

Note: this command is only supported at the command line and not in a script.
Scripts may use the python execfile function instead.

20

Chapter 3. Command line interface

MoveToPage
MoveToPage(pagenum)

Updates window to show the page number given of the document.

Note: this command is only supported in the embedding interface or
veusz_listen.

ReloadData
ReloadData()

Reload any datasets which have been linked to files.

Returns: A tuple containing a list of the imported datasets and the number of
conversions which failed for a dataset.

Rename
Remove(’widgetpath’, ’newname’)

Rename the widget at the path given to a new name. This command does not
move widgets. See To for a description of the path syntax. ’.’ can be used to select
the current widget.

Remove
Remove(’widgetpath’)

Remove the widget selected using the path. See To for a description of the path
syntax.

ResizeWindow
ResizeWindow(width, height)

Resizes window to be width by height pixels.

Note: this command is only supported in the embedding interface or
veusz_listen.

Save
Save(’filename.vsz’)

Save the current document under the filename given.

Set
Set(’settingpath’, val)

Set the setting given by the path to the value given. If the type of val is incorrect,
an InvalidType exception is thrown. The path to the setting is the optional path
to the widget the setting is contained within, an optional subsetting specifier, and
the setting itself.

Set(’page1/graph1/x/min’, -10.)

21

Chapter 3. Command line interface

SetAntiAliasing
SetAntiAliasing(on)

Enable or disable anti aliasing in the plot window, replotting the image.

SetData
SetData(name, val, symerr=None, negerr=None, poserr=None)

Set the dataset name with the values given. If None is given for an item, it will
be left blank. val is the actual data, symerr are the symmetric errors, negerr and
poserr and the getative and positive asymmetric errors. The data can be given as
lists or numpys.

SetDataExpression
SetDataExpression(name, val, symerr=None, negerr=None, poserr=None,
linked=False, parametric=None)

Create a new dataset based on the expressions given. The expressions are Python
syntax expressions based on existing datasets.

If linked is True, the dataset will change as the datasets in the expressions change.

Parametric can be set to a tuple of (minval, maxval, numitems). t in the expression
will iterate from minval to maxval in numitems values.

SetDataRange
SetDataRange(name, numsteps, val, symerr=None, negerr=None,
poserr=None, linked=False)

Set dataset to be a range of values with numsteps steps. val is tuple made up of
(minimum value, maximum value). symerr, negerr and poserr are optional tuples
for the error bars.

If linked is True, the dataset can be saved in a document as a SetDataRange, oth-
erwise it is expanded to the values which would make it up.

SetData2D
SetData2D(’name’, val, xrange=(A,B), yrange=(C,D))

Creates a two-dimensional dataset with the name given. val is either a
two-dimensional numpy array, or is a list of lists, with each list in the list
representing a row.

xrange and yrange are optional tuples giving the inclusive range of the X and Y
coordinates of the data.

SetData2DExpression
SetData2D(’name’, expr, linked=False)

Create a 2D dataset based on expressions. name is the new dataset name expr is
an expression which should return a 2D array linked specifies whether to perma-
nently link the dataset to the expressions.

SetData2DExpressionXYZ
SetData2DExpressionXYZ(’name’, ’xexpr’, ’yexpr’, ’zexpr’, linked=False)

22

Chapter 3. Command line interface

Create a 2D dataset based on three 1D expressions. The x, y expressions need to
evaluate to a grid of x, y points, with the z expression as the 2D value at that
point. Currently only linear fixed grids are supported. This function is intended
to convert calculations or measurements at fixed points into a 2D dataset easily.
Missing values are filled with NaN.

SetData2DXYFunc
SetData2DXYFunc(’name’, xstep, ystep, ’expr’, linked=False)

Construct a 2D dataset using a mathematical expression of "x" and "y". The x
values are specified as (min, max, step) in xstep as a tuple, the y values similarly.
If linked remains as False, then a real 2D dataset is created, where values can be
modified and the data are stored in the saved file.

SetDataDateTime
SetDataDateTime(’name’, vals)

Creates a datetime dataset of name given. vals is a list of Python datetime objects.

SetDataText
SetDataText(name, val)

Set the text dataset name with the values given. val must be a type that can be
converted into a Python list.

SetDataText(’mylabel’, [’oranges’, ’apples’, ’pears’, ’spam’])

SetToReference
SetToReference(setting, refval)

Set setting to match other setting refval always..

SetUpdateInterval
SetUpdateInterval(interval)

Tells window to update every interval milliseconds at most. The value 0 disables
updates until this function is called with a non-zero. The value -1 tells Veusz to
update the window every time the document has changed. This will make things
slow if repeated changes are made to the document. Disabling updates and using
the ForceUpdate command will allow the user to control updates directly.

Note: this command is only supported in the embedding interface or
veusz_listen.

SetVerbose
SetVerbose(v=True)

If v is True, then extra information is printed out by commands.

23

Chapter 3. Command line interface

StartSecondView
StartSecondView(name = ’window title’)

In the embedding interface, this method will open a new Embedding interface
onto the same document, returning the object. This new window provides a sec-
ond view onto the document. It can, for instance, show a different page to the
primary view. name is a window title for the new window.

Note: this command is only supported in the embedding interface.

TagDatasets
TagDatasets(’tag’, [’ds1’, ’ds2’...])

Adds the tag to the list of datasets given..

To
To(’widgetpath’)

The To command takes a path to a widget and moves to that widget. For example,
this may be "/", the root widget, "graph1", "/page1/graph1/x", "../x". The syntax
is designed to mimic Unix paths for files. "/" represents the base widget (where
the pages reside), and ".." represents the widget next up the tree.

Quit
Quit()

Quits Veusz. This is only supported in veusz_listen.

WaitForClose
WaitForClose()

Wait until the plotting window has been closed.

Note: this command is only supported in the embedding interface.

Zoom
Zoom(factor)

Sets the plot zoom factor, relative to a 1:1 scaling. factor can also be "width",
"height" or "page", to zoom to the page width, height or page, respectively.

This is only supported in embedded mode or veusz_listen.

Security
With the 1.0 release of Veusz, input scripts and expressions are checked for pos-
sible security risks. Only a limited subset of Python functionality is allowed, or a
dialog box is opened allowing the user to cancel the operation. Specifically you
cannot import modules, get attributes of Python objects, access globals() or lo-
cals() or do any sort of file reading or manipulation. Basically anything which
might break in Veusz or modify a system is not supported. In addition internal
Veusz functions which can modify a system are also warned against, specifically
Print(), Save() and Export().

If you are running your own scripts and do not want to be bothered by these
dialogs, you can run veusz with the --unsafe-mode option.

24

Chapter 4. Using Veusz from other programs

Non-Qt Python programs
Veusz supports being embedded within other Python programs. The calling pro-
gram can open up any number of plot windows, and manipulate the graphs
using the Veusz scripting commands, which are exposed as methods of graph
objects.

Using the embedding interface, a Python program can create multiple Veusz plot
windows showing the same or different documents. The standard Veusz opera-
tions are supported with the addition of a few specific commands.

The embedding interface runs Veusz in a second process, sending the commands
over a pipe.

Veusz must be installed in the PYTHONPATH for embedding to work. This can
be done with the setup.py distutils script. An example embedding program is in
examples/embedexample.py.

An example Python program embedding Veusz is below:

import time
import numpy
import veusz.embed as veusz

g = veusz.Embedded(’new window title’)
g.To(g.Add(’page’))
g.To(g.Add(’graph’))
g.SetData(’x’, numpy.arange(20))
g.SetData(’y’, numpy.arange(20)**2)
g.Add(’xy’)
g.Zoom(0.5)

wait 20 seconds
time.sleep(20)

win2 = veusz.Embedded(’second window example’)
win2.To(win2.Add(’page’))
win2.To(win2.Add(’graph’))
win2.Add(’function’, function=’x**2’)
win2.Set(’x/label’, ’An example axis \\emph{label}’)

time.sleep(20)

g.Close()

The supported commands are the same as in Commands, with the addition of:
Close, EnableToolbar, MoveToPage, ResizeWindow, SetUpdateInterval, StartSec-
ondView and Zoom.

PyQt4 programs
There is no direct PyQt4 interface. The standard embedding interface should
work, however.

Non Python programs
Support for non Python programs is available in a limited form. External pro-
grams may execute the veusz_listen executable or veusz_listen.py Python mod-
ule. Veusz will read its input from the standard input, and write output to stan-
dard output. This is a full Python execution environment, and supports all the
scripting commands mentioned in Commands, a Quit() command, the Enable-
Toolbar() and the Zoom(factor) command listed above. Only one window is sup-
ported at once, but many veusz_listen programs may be started.

25

Chapter 4. Using Veusz from other programs

veusz_listen may be used from the shell command line by doing something like:

veusz_listen < in.vsz

where in.vsz contains:

To(Add(’page’))
To(Add(’graph’))
SetData(’x’, arange(20))
SetData(’y’, arange(20)**2)
Add(’xy’)
Zoom(0.5)
Export("foo.eps")
Quit()

A program may interface with Veusz in this way by using the popen C Unix
function, which allows a program to be started having control of its standard
input and output. Veusz can then be controlled by writing commands to an input
pipe.

C, C++ and Fortran
A callable library interface to Veusz is on my todo list for C, C++ and Fortran.
Please tell me if you would be interested in this option.

26

	Veusz a scientific plotting package
	Table of Contents
	Chapter 1. Introduction
	Veusz
	Terminology
	Widget
	Measurements
	Settings
	Text
	Axis numbers

	Installation
	The main window
	My first plot

	Chapter 2. Reading data
	Descriptors
	Reading CSV files
	Reading FITS files
	Reading other data formats
	Manipulating datasets
	Using dataset plugins
	Using expressions to create new datasets
	Linking datasets to expressions
	Splitting data
	Defining new constants or functions
	Dataset plugins

	Chapter 3. Command line interface
	Introduction
	Commands
	Action
	Add
	AddCustom
	AddImportPath
	CloneWidget
	Close
	CreateHistogram
	DatasetPlugin
	EnableToolbar
	Export
	ForceUpdate
	Get
	GetChildren
	GetClick
	GetData
	GetDataType
	GetDatasets
	GPL
	ImportFile
	ImportFile2D
	ImportFileCSV
	ImportFilePlugin
	ImportFITSFile
	ImportString
	ImportString2D
	IsClosed
	List
	Load
	MoveToPage
	ReloadData
	Rename
	Remove
	ResizeWindow
	Save
	Set
	SetAntiAliasing
	SetData
	SetDataExpression
	SetDataRange
	SetData2D
	SetData2DExpression
	SetData2DExpressionXYZ
	SetData2DXYFunc
	SetDataDateTime
	SetDataText
	SetToReference
	SetUpdateInterval
	SetVerbose
	StartSecondView
	TagDatasets
	To
	Quit
	WaitForClose
	Zoom

	Security

	Chapter 4. Using Veusz from other programs
	NonQt Python programs
	PyQt4 programs
	Non Python programs
	C, C++ and Fortran

